Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2019, Volume 74, Issue 4, Pages 579–630
DOI: https://doi.org/10.1070/RM9892
(Mi rm9892)
 

This article is cited in 39 scientific papers (total in 39 papers)

Integral norm discretization and related problems

F. Daia, A. Prymakb, V. N. Temlyakovcde, S. Yu. Tikhonovfgh

a University of Alberta, Edmonton, Canada
b University of Manitoba, Winnipeg, Canada
c University of South Carolina, Columbia, USA
d Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
e Lomonosov Moscow State University
f Centre de Recerca Matemàtica, Barcelona, Spain
g ICREA, Barcelona, Spain
h Universitat Autònoma de Barcelona, Barcelona, Spain
References:
Abstract: The problem is discussed of replacing an integral norm with respect to a given probability measure by the corresponding integral norm with respect to a discrete measure. This problem is investigated for elements of finite-dimensional spaces. Also, discretization of the uniform norm of functions in a given finite-dimensional subspace of continuous functions is studied. Special attention is given to the case of multivariate trigonometric polynomials with frequencies (harmonics) in a finite set with fixed cardinality. Both new results and a survey of known results are presented.
Bibliography: 47 titles.
Keywords: trigonometric polynomials, discretization, Marcinkiewicz-type theorems.
Funding agency Grant number
Natural Sciences and Engineering Research Council of Canada (NSERC) RGPIN 04702-15
RGPIN 04863-15
Ministry of Education and Science of the Russian Federation 14.W03.31.0031
Ministerio de Ciencia e Innovación de España MTM 2017-87409-P
2017 SGR 358
Generalitat de Catalunya
The first author's research was partially supported by NSERC of Canada Discovery Grant RGPIN 04702-15. The second author's research was partially supported by NSERC of Canada Discovery Grant RGPIN 04863-15. The third author's research was supported by the Russian Federation Government Grant No. 14.W03.31.0031. The fourth author's research was partially supported by MTM 2017-87409-P, 2017 SGR 358, and the CERCA Programme of the Generalitat de Catalunya.
Received: 20.12.2018
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: English
Original paper language: Russian
Citation: F. Dai, A. Prymak, V. N. Temlyakov, S. Yu. Tikhonov, “Integral norm discretization and related problems”, Russian Math. Surveys, 74:4 (2019), 579–630
Citation in format AMSBIB
\Bibitem{DaiPryTem19}
\by F.~Dai, A.~Prymak, V.~N.~Temlyakov, S.~Yu.~Tikhonov
\paper Integral norm discretization and related problems
\jour Russian Math. Surveys
\yr 2019
\vol 74
\issue 4
\pages 579--630
\mathnet{http://mi.mathnet.ru/eng/rm9892}
\crossref{https://doi.org/10.1070/RM9892}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3985711}
\zmath{https://zbmath.org/?q=an:7179262}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019RuMaS..74..579D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000510640800001}
\elib{https://elibrary.ru/item.asp?id=38710207}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087368879}
Linking options:
  • https://www.mathnet.ru/eng/rm9892
  • https://doi.org/10.1070/RM9892
  • https://www.mathnet.ru/eng/rm/v74/i4/p3
  • This publication is cited in the following 39 articles:
    1. Michael I. Ganzburg, “Discretization Theorems for Entire Functions of Exponential Type”, Journal of Mathematical Analysis and Applications, 2025, 129510  crossref
    2. A. P. Solodov, V. N. Temlyakov, “Vosstanovlenie po znacheniyam v tochkakh v funktsionalnykh klassakh so strukturnym usloviem”, Matem. zametki, 117:4 (2025), 543–560  mathnet  crossref
    3. Egor Kosov, Sergey Tikhonov, “Sampling discretization in Orlicz spaces”, Journal of Functional Analysis, 2025, 110971  crossref
    4. E. Kosov, V. Temlyakov, “Sampling discretization of the uniform norm and applications”, Journal of Mathematical Analysis and Applications, 2024, 128431  crossref  mathscinet
    5. F. Dai, V. Temlyakov, “Random points are good for universal discretization”, J. Math. Anal. Appl., 529:1 (2024), 127570–28  mathnet  crossref  mathscinet  zmath  isi
    6. I. V. Limonova, Yu. V. Malykhin, V. N. Temlyakov, “One-sided discretization inequalities and sampling recovery”, Russian Math. Surveys, 79:3 (2024), 515–545  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. András Kroó, “On Bernstein-Markov property for multivariate polynomials”, Journal of Mathematical Analysis and Applications, 2024, 129179  crossref
    8. Lars Becker, Ohad Klein, Joseph Slote, Alexander Volberg, Haonan Zhang, “Dimension-free discretizations of the uniform norm by small product sets”, Invent. math., 2024  crossref
    9. V. N. Temlyakov, “Sparse sampling recovery in integral norms on some function classes”, Sb. Math., 215:10 (2024), 1406–1425  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    10. B. Kashin, S. Konyagin, V. Temlyakov, “Sampling discretization of the uniform norm”, Constr. Approx., 57:2 (2023), 663  crossref  mathscinet
    11. Y. Xu, A. Narayan, “Randomized weakly admissible meshes”, Journal of Approximation Theory, 285 (2023), 105835  crossref  mathscinet
    12. F. Dai, V. Temlyakov, “Universal sampling discretization”, Constr. Approx., 58 (2023), 589–-613  crossref  mathscinet
    13. D. Freeman, D. Ghoreishi, “Discretizing LpLp norms and frame theory”, Journal of Mathematical Analysis and Applications, 519:2 (2023), 126846  crossref  mathscinet
    14. F. Dai, E. Kosov, V. Temlyakov, “Some improved bounds in sampling discretization of integral norms”, Journal of Functional Analysis, 285:4 (2023), 109951  crossref  mathscinet
    15. F. Dai, A. Prymak, “Optimal polynomial meshes exist on any multivariate convex domain”, Found Comput. Math., 2023  crossref
    16. V. N. Temlyakov, “Sampling discretization error of integral norms for function classes with small smoothness”, Journal of Approximation Theory, 293 (2023), 105913  crossref  mathscinet
    17. V. N. Temlyakov, “On Universal Sampling Recovery in the Uniform Norm”, Proc. Steklov Inst. Math., 323 (2023), 206–216  mathnet  crossref  crossref  mathscinet
    18. F. Dai, A. Prymak, “Polynomial approximation on C2C2-domains”, Constr. Approx., 2023  crossref
    19. A. Kroó, “On discretizing integral norms of exponential sums”, J. Math. Anal. Appl., 507:2 (2022), 125770, 18 pp.  crossref  mathscinet  zmath  isi  scopus
    20. A. Kroó, “On discretizing uniform norms of exponential sums”, Constr. Approx., 56 (2022), 45–73  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:846
    Russian version PDF:145
    English version PDF:92
    References:103
    First page:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025