Supported by the Ministry of Education and Science of the Russian Federation (project no. 14.Z50.31.0037) and the Programme of the President of the Russian Federation for the support of young scientists (grant no. MK-2213.2018.1).
Citation:
A. V. Zvyagin, “Weak solvability and convergence of solutions for the fractional Voigt-$\alpha$ model of a viscoelastic medium”, Russian Math. Surveys, 74:3 (2019), 549–551
\Bibitem{Zvy19}
\by A.~V.~Zvyagin
\paper Weak solvability and convergence of solutions for the fractional Voigt-$\alpha$ model of a~viscoelastic medium
\jour Russian Math. Surveys
\yr 2019
\vol 74
\issue 3
\pages 549--551
\mathnet{http://mi.mathnet.ru/eng/rm9880}
\crossref{https://doi.org/10.1070/RM9880}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3954333}
\zmath{https://zbmath.org/?q=an:1441.35229}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019RuMaS..74..549Z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000484358900008}
\elib{https://elibrary.ru/item.asp?id=37652212}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85072736552}
Linking options:
https://www.mathnet.ru/eng/rm9880
https://doi.org/10.1070/RM9880
https://www.mathnet.ru/eng/rm/v74/i3/p189
This publication is cited in the following 17 articles:
A. V. Zvyagin, “On the existence of weak solutions of the Kelvin–Voigt model”, Math. Notes, 116:1 (2024), 130–135
E. I. Kostenko, “Investigation of Weak Solvability of One Model Nonlinear Viscosity Fluid”, Lobachevskii J Math, 45:4 (2024), 1421
A. V. Zvyagin, E. I. Kostenko, “The Existence Problem of Feedback Control for One Fractional Voigt Model”, J Math Sci, 2024
A. V. Zvyagin, E. I. Kostenko, “Zadacha suschestvovaniya upravleniya s obratnoi svyazyu dlya odnoi drobnoi modeli Foigta”, SMFN, 69, no. 4, Rossiiskii universitet druzhby narodov, M., 2023, 621–642
A. V. Zvyagin, “Uniform attractors for non-autonomous systems of nonlinearly viscous fluid”, Lobachevskii J. Math., 44:3 (2023), 956
V. G. Zvyagin, E. I. Kostenko, “Investigation of the weak solvability of one fractional model with infinite memory”, Lobachevskii J. Math., 44:3 (2023), 969
A. Zvyagin, E. Kostenko, “Investigation of the weak solvability of one viscoelastic fractional Voigt model”, Mathematics, 11:21 (2023), 4472
A. V. Zvyagin, E. I. Kostenko, “On the existence of feedback control for one fractional Voigt model”, Diff Equat, 59:12 (2023), 1778
M. V. Shitikova, “Fractional operator viscoelastic models in dynamic problems of mechanics of solids: a review”, Mech. Sol., 57 (2022), 1–33
V. G. Zvyagin, V. P. Orlov, “Weak solvability of motion models for a viscoelastic fluid with a higher-order rheological relation”, Russian Math. Surveys, 77:4 (2022), 753–755
A. V. Zvyagin, “Weak solvability of non-linearly viscous Pavlovsky model”, Russian Math. (Iz. VUZ), 66:6 (2022), 73–78
V. Zvyagin, V. Orlov, “On strong solutions of fractional nonlinear viscoelastic model of Voigt type”, Math. Meth. Appl. Sci., 44:15 (2021), 11768–11782
A. V. Zvyagin, “Investigation of the weak solubility of the fractional Voigt alpha-model”, Izv. Math., 85:1 (2021), 61–91
A. V. Zvyagin, “An alpha-model of polymer solutions motion”, Russian Math. (Iz. VUZ), 65:5 (2021), 21–29
A. Ashyralyev, V. Zvyagin, A. Zvyagin, “About optimal feedback control problem for motion model of nonlinearly viscous fluid”, International Conference on Analysis and Applied Mathematics (ICAAM 2020), AIP Conf. Proc., 2325, Amer. Inst. Phys., 2021, 020003
A. V. Zvyagin, V. G. Zvyagin, “Weak Solvability of Termo-Voigt- $$\alpha$$ Model”, Lobachevskii J Math, 42:15 (2021), 3793
V. Zvyagin, A. Zvyagin, A. Ustiuzhaninova, “Optimal feedback control problem for the fractional voigt-alpha model”, Mathematics, 8:7 (2020), 1197