Loading [MathJax]/jax/output/SVG/config.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2019, Volume 74, Issue 3, Pages 549–551
DOI: https://doi.org/10.1070/RM9880
(Mi rm9880)
 

This article is cited in 17 scientific papers (total in 17 papers)

Brief Communications

Weak solvability and convergence of solutions for the fractional Voigt-$\alpha$ model of a viscoelastic medium

A. V. Zvyagin

Voronezh State University
References:
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 14.Z50.31.0037
МК-2213.2018.1
Supported by the Ministry of Education and Science of the Russian Federation (project no. 14.Z50.31.0037) and the Programme of the President of the Russian Federation for the support of young scientists (grant no. MK-2213.2018.1).
Bibliographic databases:
Document Type: Article
MSC: 76A05, 35Q35
Language: English
Original paper language: Russian
Citation: A. V. Zvyagin, “Weak solvability and convergence of solutions for the fractional Voigt-$\alpha$ model of a viscoelastic medium”, Russian Math. Surveys, 74:3 (2019), 549–551
Citation in format AMSBIB
\Bibitem{Zvy19}
\by A.~V.~Zvyagin
\paper Weak solvability and convergence of solutions for the fractional Voigt-$\alpha$ model of a~viscoelastic medium
\jour Russian Math. Surveys
\yr 2019
\vol 74
\issue 3
\pages 549--551
\mathnet{http://mi.mathnet.ru/eng/rm9880}
\crossref{https://doi.org/10.1070/RM9880}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3954333}
\zmath{https://zbmath.org/?q=an:1441.35229}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019RuMaS..74..549Z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000484358900008}
\elib{https://elibrary.ru/item.asp?id=37652212}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85072736552}
Linking options:
  • https://www.mathnet.ru/eng/rm9880
  • https://doi.org/10.1070/RM9880
  • https://www.mathnet.ru/eng/rm/v74/i3/p189
  • This publication is cited in the following 17 articles:
    1. A. V. Zvyagin, “On the existence of weak solutions of the Kelvin–Voigt model”, Math. Notes, 116:1 (2024), 130–135  mathnet  crossref  crossref
    2. E. I. Kostenko, “Investigation of Weak Solvability of One Model Nonlinear Viscosity Fluid”, Lobachevskii J Math, 45:4 (2024), 1421  crossref
    3. A. V. Zvyagin, E. I. Kostenko, “The Existence Problem of Feedback Control for One Fractional Voigt Model”, J Math Sci, 2024  crossref
    4. A. V. Zvyagin, E. I. Kostenko, “Zadacha suschestvovaniya upravleniya s obratnoi svyazyu dlya odnoi drobnoi modeli Foigta”, SMFN, 69, no. 4, Rossiiskii universitet druzhby narodov, M., 2023, 621–642  mathnet  crossref
    5. A. V. Zvyagin, “Uniform attractors for non-autonomous systems of nonlinearly viscous fluid”, Lobachevskii J. Math., 44:3 (2023), 956  crossref  mathscinet  zmath
    6. V. G. Zvyagin, E. I. Kostenko, “Investigation of the weak solvability of one fractional model with infinite memory”, Lobachevskii J. Math., 44:3 (2023), 969  crossref  mathscinet  zmath
    7. A. Zvyagin, E. Kostenko, “Investigation of the weak solvability of one viscoelastic fractional Voigt model”, Mathematics, 11:21 (2023), 4472  crossref
    8. A. V. Zvyagin, E. I. Kostenko, “On the existence of feedback control for one fractional Voigt model”, Diff Equat, 59:12 (2023), 1778  crossref  crossref  mathscinet
    9. M. V. Shitikova, “Fractional operator viscoelastic models in dynamic problems of mechanics of solids: a review”, Mech. Sol., 57 (2022), 1–33  crossref  isi  scopus
    10. V. G. Zvyagin, V. P. Orlov, “Weak solvability of motion models for a viscoelastic fluid with a higher-order rheological relation”, Russian Math. Surveys, 77:4 (2022), 753–755  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    11. A. V. Zvyagin, “Weak solvability of non-linearly viscous Pavlovsky model”, Russian Math. (Iz. VUZ), 66:6 (2022), 73–78  mathnet  crossref  crossref
    12. V. Zvyagin, V. Orlov, “On strong solutions of fractional nonlinear viscoelastic model of Voigt type”, Math. Meth. Appl. Sci., 44:15 (2021), 11768–11782  crossref  mathscinet  zmath  isi  scopus
    13. A. V. Zvyagin, “Investigation of the weak solubility of the fractional Voigt alpha-model”, Izv. Math., 85:1 (2021), 61–91  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    14. A. V. Zvyagin, “An alpha-model of polymer solutions motion”, Russian Math. (Iz. VUZ), 65:5 (2021), 21–29  mathnet  crossref  crossref  isi
    15. A. Ashyralyev, V. Zvyagin, A. Zvyagin, “About optimal feedback control problem for motion model of nonlinearly viscous fluid”, International Conference on Analysis and Applied Mathematics (ICAAM 2020), AIP Conf. Proc., 2325, Amer. Inst. Phys., 2021, 020003  crossref  mathscinet  isi  scopus
    16. A. V. Zvyagin, V. G. Zvyagin, “Weak Solvability of Termo-Voigt-
      $$\alpha$$
      Model”, Lobachevskii J Math, 42:15 (2021), 3793  crossref  mathscinet
    17. V. Zvyagin, A. Zvyagin, A. Ustiuzhaninova, “Optimal feedback control problem for the fractional voigt-alpha model”, Mathematics, 8:7 (2020), 1197  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:465
    Russian version PDF:39
    English version PDF:18
    References:67
    First page:37
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025