Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2018, Volume 73, Issue 6, Pages 941–1031
DOI: https://doi.org/10.1070/RM9841
(Mi rm9841)
 

This article is cited in 28 scientific papers (total in 28 papers)

The Lauricella hypergeometric function $F_D^{(N)}$, the Riemann–Hilbert problem, and some applications

S. I. Bezrodnykhab

a Dorodnicyn Computing Centre of Russian Academy of Sciences
b Peoples' Friendship University of Russia
References:
Abstract: The problem of analytic continuation is considered for the Lauricella function $F_D^{(N)}$, a generalized hypergeometric functions of $N$ complex variables. For an arbitrary $N$ a complete set of formulae is given for its analytic continuation outside the boundary of the unit polydisk, where it is defined originally by an $N$-variate hypergeometric series. Such formulae represent $F_D^{(N)}$ in suitable subdomains of $\mathbb{C}^N$ in terms of other generalized hypergeometric series, which solve the same system of partial differential equations as $F_D^{(N)}$. These hypergeometric series are the $N$-dimensional analogue of Kummer's solutions in the theory of Gauss's classical hypergeometric equation. The use of this function in the theory of the Riemann–Hilbert problem and its applications to the Schwarz–Christoffel parameter problem and problems in plasma physics are also discussed.
Bibliography: 163 titles.
Keywords: multivariate hypergeometric functions, systems of partial differential equations, analytic continuation, Riemann–Hilbert problem, Schwarz–Christoffel integral, crowding problem, magnetic reconnection phenomenon.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 5-100
Russian Foundation for Basic Research 16-01-00781
16-07-01195
This research was carried out with the support of the Peoples' Friendship University of Russia, programme “5-100”, and the Russian Foundation for Basic Research (grant nos. 16-01-00781 and 16-07-01195).
Received: 18.07.2018
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: Primary 33C65, 30E25, 30C20; Secondary 82D10, 85A15
Language: English
Original paper language: Russian
Citation: S. I. Bezrodnykh, “The Lauricella hypergeometric function $F_D^{(N)}$, the Riemann–Hilbert problem, and some applications”, Russian Math. Surveys, 73:6 (2018), 941–1031
Citation in format AMSBIB
\Bibitem{Bez18}
\by S.~I.~Bezrodnykh
\paper The Lauricella hypergeometric function $F_D^{(N)}$, the Riemann--Hilbert problem, and some applications
\jour Russian Math. Surveys
\yr 2018
\vol 73
\issue 6
\pages 941--1031
\mathnet{http://mi.mathnet.ru//eng/rm9841}
\crossref{https://doi.org/10.1070/RM9841}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3881788}
\zmath{https://zbmath.org/?q=an:1428.33027}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018RuMaS..73..941B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000460154500001}
\elib{https://elibrary.ru/item.asp?id=36448077}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85063482830}
Linking options:
  • https://www.mathnet.ru/eng/rm9841
  • https://doi.org/10.1070/RM9841
  • https://www.mathnet.ru/eng/rm/v73/i6/p3
  • This publication is cited in the following 28 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024