Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2019, Volume 74, Issue 5, Pages 851–908
DOI: https://doi.org/10.1070/RM9835
(Mi rm9835)
 

This article is cited in 34 scientific papers (total in 34 papers)

Krotov method for optimal control of closed quantum systems

O. V. Morzhina, A. N. Pechenab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b National University of Science and Technology "MISIS"
References:
Abstract: The mathematics of optimal control of quantum systems is of great interest in connection with fundamental problems of physics as well as with existing and prospective applications to quantum technologies. One important problem is the development of methods for constructing controls for quantum systems. One of the commonly used methods is the Krotov method, which was initially proposed outside of quantum control theory in articles by Krotov and Feldman (1978, 1983). This method was used to develop a novel approach to finding optimal controls for quantum systems in [64] (Tannor, Kazakov, and Orlov, 1992), [65] (Somlói, Kazakov, and Tannor, 1993), and in many other works by various scientists. Our survey discusses mathematical aspects of this method for optimal control of closed quantum systems. It outlines various modifications with different forms of the improvement function (for example, linear or linear-quadratic), different constraints on the control spectrum and on the admissible states of the quantum system, different regularisers, and so on. The survey describes applications of the Krotov method to controlling molecular dynamics and Bose–Einstein condensates, and to quantum gate generation. This method is compared with the GRAPE (GRadient Ascent Pulse Engineering) method, the CRAB (Chopped Random-Basis) method, and the Zhu–Rabitz and Maday–Turinici methods.
Bibliography: 158 titles.
Keywords: quantum control, coherent control, Krotov method, closed quantum systems, quantum technology.
Funding agency Grant number
Russian Science Foundation 17-11-01388
Ministry of Science and Higher Education of the Russian Federation 1.669.2016/1.4
Work on Sections 1, 3, 4, and 5 was undertaken by both authors in the Steklov Mathematical Institute of the Russian Academy of Sciences and supported by the Russian Science Foundation under grant no. 17-11-01388, work on Subsections 2.1, 2.2, and 2.3 was undertaken by both authors and supported in the framework of the state programme assigned to the Steklov Mathematical Institute of the Russian Academy of Sciences, work on Subsection 2.4 and Section 6 was undertaken by the first author in the framework of the state programme assigned to the Steklov Mathematical Institute of the Russian Academy of Sciences and by the second author in MISIS in the framework of project no. 1.669.2016/1.4 of the Ministry of Science and Higher Education of the Russian Federation, and work on Subsections 2.5 and 2.6 was undertaken by the second author in MISIS also in the framework of project no. 1.669.2016/1.4.
Received: 29.05.2018
Revised: 20.04.2019
Bibliographic databases:
Document Type: Article
UDC: 517.958
MSC: Primary 81Q93; Secondary 49Mxx, 35Q40, 93C15
Language: English
Original paper language: Russian
Citation: O. V. Morzhin, A. N. Pechen, “Krotov method for optimal control of closed quantum systems”, Russian Math. Surveys, 74:5 (2019), 851–908
Citation in format AMSBIB
\Bibitem{MorPec19}
\by O.~V.~Morzhin, A.~N.~Pechen
\paper Krotov method for optimal control of closed quantum systems
\jour Russian Math. Surveys
\yr 2019
\vol 74
\issue 5
\pages 851--908
\mathnet{http://mi.mathnet.ru/eng/rm9835}
\crossref{https://doi.org/10.1070/RM9835}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4017576}
\zmath{https://zbmath.org/?q=an:1435.81085}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019RuMaS..74..851M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000510641200002}
\elib{https://elibrary.ru/item.asp?id=43242328}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85079676457}
Linking options:
  • https://www.mathnet.ru/eng/rm9835
  • https://doi.org/10.1070/RM9835
  • https://www.mathnet.ru/eng/rm/v74/i5/p83
  • This publication is cited in the following 34 articles:
    1. N. Anders Petersson, Stefanie Günther, Seung Whan Chung, “A time-parallel multiple-shooting method for large-scale quantum optimal control”, Journal of Computational Physics, 2025, 113712  crossref
    2. S. I. Doronin, E. B. Fel'dman, A. I. Zenchuk, “Two-level control over quantum state creation via entangled equal-probability state”, Quantum Inf Process, 24:2 (2025)  crossref
    3. Omar Shindi, Qi Yu, Parth Girdhar, Daoyi Dong, “Model-Free Quantum Gate Design and Calibration Using Deep Reinforcement Learning”, IEEE Trans. Artif. Intell., 5:1 (2024), 346  crossref
    4. Ido Halperin, “The Meaning and Accuracy of the Improving Functions in the Solution of the CBQR by Krotov's Method”, Mathematics, 12:4 (2024), 611  crossref
    5. Oleg V. Morzhin, Alexander N. Pechen, “Using and Optimizing Time-Dependent Decoherence Rates and Coherent Control for a Qutrit System”, Proc. Steklov Inst. Math., 324 (2024), 153–168  mathnet  crossref  crossref  mathscinet  zmath
    6. A. N. Pechen, V. N. Petruhanov, O. V. Morzhin, B. O. Volkov, “Control landscapes for high-fidelity generation of C-NOT and C-PHASE gates with coherent and environmental driving”, Eur. Phys. J. Plus, 139 (2024), 411  mathnet  crossref  isi
    7. Philippe Lewalle, Yipei Zhang, K. Birgitta Whaley, “Optimal Zeno Dragging for Quantum Control: A Shortcut to Zeno with Action-Based Scheduling Optimization”, PRX Quantum, 5:2 (2024)  crossref
    8. O. V. Morzhin, A. N. Pechen, “Generation of C-NOT, SWAP, and C-Z Gates for two qubits using coherent and incoherent controls and stochastic optimization”, Lobachevskii J. Math., 45:2 (2024), 728–740  mathnet  crossref  isi
    9. Vincent Hardel, Giovanni Manfredi, Paul-Antoine Hervieux, Rémi Goerlich, “Shortcuts to adiabaticity in harmonic traps: A quantum-classical analog”, Phys. Rev. E, 110:5 (2024)  crossref
    10. Michael Schilling, Francesco Preti, Matthias M. Müller, Tommaso Calarco, Felix Motzoi, “Exponentiation of parametric Hamiltonians via unitary interpolation”, Phys. Rev. Research, 6:4 (2024)  crossref
    11. V. N. Petruhanov, A. N. Pechen, “Quantum gate generation in two-level open quantum systems by coherent and incoherent photons found with gradient search”, Photonics, 10:2 (2023), 220  crossref
    12. T. Araki, F. Nori, C. Gneiting, “Robust quantum control with disorder-dressed evolution”, Phys. Rev. A, 107:3 (2023), 032609  crossref  mathscinet
    13. Izv. Math., 87:5 (2023), 906–919  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    14. Izv. Math., 87:5 (2023), 1024–1050  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    15. Oleg V. Morzhin, Alexander N. Pechen, “Krotov type optimization of coherent and incoherent controls for open two-qubit systems”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 45 (2023), 3–23  mathnet  crossref
    16. S. Borah, B. Sarma, “No-collapse accurate quantum feedback control via conditional state tomography”, Phys. Rev. Lett., 131:21 (2023), 210803  crossref  mathscinet
    17. A. N. Pechen, O. V. Morzhin, “Optimal state manipulation for a two-qubit system driven by coherent and incoherent controls”, Quantum Inf. Process., 22 (2023), 241–27  mathnet  crossref  mathscinet  isi
    18. A. N. Pechen, V. N. Petruhanov, “GRAPE optimization for open quantum systems with time-dependent decoherence rates driven by coherent and incoherent controls”, J. Phys. A, 56:30 (2023), 305303, 26 pp.  mathnet  crossref  mathscinet  isi
    19. C. Jiang, Y. Pan, Z.-G. Wu, Q. Gao, D. Dong, “Robust optimization for quantum reinforcement learning control using partial observations”, Phys. Rev. A, 105:6 (2022), 062443  crossref  mathscinet
    20. T. Koike, “Quantum brachistochrone”, Phil. Trans. R. Soc. A, 380:2239 (2022)  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1383
    Russian version PDF:452
    English version PDF:134
    References:164
    First page:59
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025