Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2017, Volume 72, Issue 4, Pages 707–763
DOI: https://doi.org/10.1070/RM9778
(Mi rm9778)
 

This article is cited in 6 scientific papers (total in 6 papers)

Extensions of vertex algebras. Constructions and applications

B. L. Feigin

National Research University "Higher School of Economics", International Laboratory of Representation Theory and Mathematical Physics
References:
Abstract: This paper discusses the main known constructions of vertex operator algebras. The starting point is the lattice algebra. Screenings distinguish subalgebras of lattice algebras. Moreover, one can construct extensions of vertex algebras. Combining these constructions gives most of the known examples. A large class of algebras with big centres is constructed. Such algebras have applications to the geometric Langlands programme.
Bibliography: 46 titles.
Keywords: vertex operator algebras, screenings, opers, quantum groups.
Funding agency Grant number
Russian Science Foundation 16-11-10316
This work was supported by the Russian Science Foundation under grant no. 16-11-10316.
Received: 10.04.2017
Bibliographic databases:
Document Type: Article
UDC: 512
MSC: Primary 17B69, 17B80, 81R10; Secondary 81R50
Language: English
Original paper language: Russian
Citation: B. L. Feigin, “Extensions of vertex algebras. Constructions and applications”, Russian Math. Surveys, 72:4 (2017), 707–763
Citation in format AMSBIB
\Bibitem{Fei17}
\by B.~L.~Feigin
\paper Extensions of vertex algebras. Constructions and applications
\jour Russian Math. Surveys
\yr 2017
\vol 72
\issue 4
\pages 707--763
\mathnet{http://mi.mathnet.ru//eng/rm9778}
\crossref{https://doi.org/10.1070/RM9778}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3687130}
\zmath{https://zbmath.org/?q=an:1432.17031}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017RuMaS..72..707F}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000417649600004}
\elib{https://elibrary.ru/item.asp?id=29833308}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85039449528}
Linking options:
  • https://www.mathnet.ru/eng/rm9778
  • https://doi.org/10.1070/RM9778
  • https://www.mathnet.ru/eng/rm/v72/i4/p131
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025