Loading [MathJax]/jax/output/SVG/config.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2016, Volume 71, Issue 6, Pages 1135–1136
DOI: https://doi.org/10.1070/RM9752
(Mi rm9752)
 

This article is cited in 4 scientific papers (total in 4 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

Dyadic analogues of Hilbert matrices

B. S. Kashin

Steklov Mathematical Institute of Russian Academy of Sciences
References:
Keywords: Hilbert matrix, Rademacher functions, orthogonal series.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work was supported by the Russian Science Foundation under grant 14-50-00005.
Presented: A. G. Sergeev
Accepted: 01.11.2016
Bibliographic databases:
Document Type: Article
MSC: Primary 15B99; Secondary 42C05
Language: English
Original paper language: Russian
Citation: B. S. Kashin, “Dyadic analogues of Hilbert matrices”, Russian Math. Surveys, 71:6 (2016), 1135–1136
Citation in format AMSBIB
\Bibitem{Kas16}
\by B.~S.~Kashin
\paper Dyadic analogues of Hilbert matrices
\jour Russian Math. Surveys
\yr 2016
\vol 71
\issue 6
\pages 1135--1136
\mathnet{http://mi.mathnet.ru/eng/rm9752}
\crossref{https://doi.org/10.1070/RM9752}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588941}
\zmath{https://zbmath.org/?q=an:06721073}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016RuMaS..71.1135K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000398177400004}
\elib{https://elibrary.ru/item.asp?id=27485029}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85016071415}
Linking options:
  • https://www.mathnet.ru/eng/rm9752
  • https://doi.org/10.1070/RM9752
  • https://www.mathnet.ru/eng/rm/v71/i6/p155
  • This publication is cited in the following 4 articles:
    1. A. P. Solodov, “On Orthogonal Systems with Extremely Large $L_2$-Norm of the Maximal Operator”, Math. Notes, 109:3 (2021), 459–472  mathnet  crossref  crossref  isi  elib
    2. E. M. Dyuzhev, “Norm estimates for matrices with arbitrary elements constant in binary blocks”, Moscow University Mathematics Bulletin, 75:3 (2020), 126–128  mathnet  crossref  mathscinet  zmath  isi
    3. E. M. Dyuzhev, “Estimate of the Norms of Matrices whose Entries are Constant in Binary Blocks”, Math. Notes, 104:5 (2018), 749–752  mathnet  crossref  crossref  mathscinet  isi  elib
    4. B. S. Kashin, Yu. V. Malykhin, K. S. Ryutin, “Kolmogorov width and approximate rank”, Proc. Steklov Inst. Math., 303 (2018), 140–153  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:736
    Russian version PDF:116
    English version PDF:26
    References:101
    First page:71
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025