Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2016, Volume 71, Issue 3, Pages 591–593
DOI: https://doi.org/10.1070/RM9718
(Mi rm9718)
 

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

On operators of the form $\partial_x^4+u(x)$ from a pair of commuting differential operators of rank 2 and genus $g$

V. S. Oganesyan

Moscow State University
References:
Funding agency Grant number
Simons Foundation
Supported in part by the Simons Foundation.
Presented: V. M. Buchstaber
Accepted: 02.04.2016
Bibliographic databases:
Document Type: Article
MSC: 34L40, 34L99, 14H60
Language: English
Original paper language: Russian
Citation: V. S. Oganesyan, “On operators of the form $\partial_x^4+u(x)$ from a pair of commuting differential operators of rank 2 and genus $g$”, Russian Math. Surveys, 71:3 (2016), 591–593
Citation in format AMSBIB
\Bibitem{Oga16}
\by V.~S.~Oganesyan
\paper On operators of the form $\partial_x^4+u(x)$ from a~pair of commuting differential operators of rank~2 and genus~$g$
\jour Russian Math. Surveys
\yr 2016
\vol 71
\issue 3
\pages 591--593
\mathnet{http://mi.mathnet.ru//eng/rm9718}
\crossref{https://doi.org/10.1070/RM9718}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3535369}
\zmath{https://zbmath.org/?q=an:1358.37114}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016RuMaS..71..591O}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000383395200007}
\elib{https://elibrary.ru/item.asp?id=26414389}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84987803042}
Linking options:
  • https://www.mathnet.ru/eng/rm9718
  • https://doi.org/10.1070/RM9718
  • https://www.mathnet.ru/eng/rm/v71/i3/p201
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024