Loading [MathJax]/jax/output/SVG/config.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2015, Volume 70, Issue 2, Pages 331–367
DOI: https://doi.org/10.1070/RM2015v070n02ABEH004949
(Mi rm9634)
 

This article is cited in 41 scientific papers (total in 41 papers)

Gaussian optimizers and the additivity problem in quantum information theory

A. S. Holevo

Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: This paper surveys two remarkable analytical problems of quantum information theory. The main part is a detailed report on the recent (partial) solution of the quantum Gaussian optimizer problem which establishes an optimal property of Glauber's coherent states — a particular case of pure quantum Gaussian states. The notion of a quantum Gaussian channel is developed as a non-commutative generalization of an integral operator with Gaussian kernel, and it is shown that the coherent states, and under certain conditions only they, minimize a broad class of concave functionals of the output of a Gaussian channel. Thus, the output states corresponding to a Gaussian input are the ‘least chaotic’, majorizing all the other outputs. The solution, however, is essentially restricted to the gauge-invariant case where a distinguished complex structure plays a special role. Also discussed is the related well-known additivity conjecture, which was solved in principle in the negative some five years ago. This refers to the additivity or multiplicativity (with respect to tensor products of channels) of information quantities related to the classical capacity of a quantum channel, such as the $(1\to p)$-norms or the minimal von Neumann or Rényi output entropies. A remarkable corollary of the present solution of the quantum Gaussian optimizer problem is that these additivity properties, while not valid in general, do hold in the important and interesting class of gauge-covariant Gaussian channels.
Bibliography: 65 titles.
Keywords: completely positive map, canonical commutation relations, Gaussian state, coherent state, quantum Gaussian channel, gauge covariance, von Neumann entropy, channel capacity, majorization.
Funding agency Grant number
Russian Science Foundation 14-21-00162
This work is supported by the Russian Science Foundation under grant 14-21-00162.
Received: 11.01.2015
Bibliographic databases:
Document Type: Article
UDC: 519.248.3+517.983.2
MSC: Primary 94A40; Secondary 81P45, 81P68
Language: English
Original paper language: Russian
Citation: A. S. Holevo, “Gaussian optimizers and the additivity problem in quantum information theory”, Russian Math. Surveys, 70:2 (2015), 331–367
Citation in format AMSBIB
\Bibitem{Hol15}
\by A.~S.~Holevo
\paper Gaussian optimizers and the additivity problem in quantum information theory
\jour Russian Math. Surveys
\yr 2015
\vol 70
\issue 2
\pages 331--367
\mathnet{http://mi.mathnet.ru/eng/rm9634}
\crossref{https://doi.org/10.1070/RM2015v070n02ABEH004949}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3353129}
\zmath{https://zbmath.org/?q=an:06503857}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015RuMaS..70..331H}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000358073900004}
\elib{https://elibrary.ru/item.asp?id=23421591}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84937419246}
Linking options:
  • https://www.mathnet.ru/eng/rm9634
  • https://doi.org/10.1070/RM2015v070n02ABEH004949
  • https://www.mathnet.ru/eng/rm/v70/i2/p141
  • This publication is cited in the following 41 articles:
    1. Vsevolod I. Yashin, Maria A. Elovenkova, “Characterization of non-adaptive Clifford channels”, Quantum Inf Process, 24:3 (2025)  crossref
    2. Evgeny I. Zelenov, “On the Minimum of the Wehrl Entropy for a Locally Compact Abelian Group”, Proc. Steklov Inst. Math., 324 (2024), 86–90  mathnet  crossref  crossref  mathscinet  zmath
    3. Alessio Lapponi, Jorma Louko, Stefano Mancini, “Making two particle detectors in flat spacetime communicate quantumly”, Phys. Rev. D, 110:2 (2024)  crossref
    4. Salman Beigi, Saleh Rahimi-Keshari, “A Meta Logarithmic-Sobolev Inequality for Phase-Covariant Gaussian Channels”, Ann. Henri Poincaré, 2024  crossref
    5. R. N. Gumerov, R. L. Khazhin, “Generating quantum dynamic mapping”, Theoret. and Math. Phys., 221:3 (2024), 2177–2192  mathnet  crossref  crossref  adsnasa
    6. Hemant K. Mishra, Samad Khabbazi Oskouei, Mark M. Wilde, “Optimal input states for quantifying the performance of continuous-variable unidirectional and bidirectional teleportation”, Phys. Rev. A, 107:6 (2023)  crossref
    7. Teretenkov A.E., “Symplectic Analogs of Polar Decomposition and Their Applications to Bosonic Gaussian Channels”, Linear Multilinear Algebra, 70:9 (2022), 1673–1681  crossref  mathscinet  isi
    8. A. S. Holevo, “Logarithmic Sobolev inequality and Hypothesis of Quantum Gaussian Maximizers”, Russian Math. Surveys, 77:4 (2022), 766–768  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    9. A. S. Holevo, “Quantum noise as noncommutative stationary random process”, Int. J. Mod. Phys. A, 37:20n21 (2022)  crossref
    10. Vinod Sharma, Konchady Gautam Shenoy, “Quantum Information Theory in Infinite Dimensions with Application to Optical Channels”, J Indian Inst Sci, 2022  crossref
    11. De Palma G., Trevisan D., “Quantum Optimal Transport With Quantum Channels”, Ann. Henri Poincare, 22:10 (2021), 3199–3234  crossref  mathscinet  isi
    12. A. S. Holevo, “On conditions for an operator to be in the class $\mathscr{S}_{p}$”, Russian Math. Surveys, 75:1 (2020), 193–195  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. A. S. Holevo, “Schatten Class Operators in a Representation Space of Canonical Commutation Relations”, Proc. Steklov Inst. Math., 309 (2020), 150–158  mathnet  crossref  crossref  mathscinet  isi  elib
    14. G. De Palma, “The entropy power inequality with quantum conditioning”, J. Phys. A-Math. Theor., 52:8 (2019), 08LT03  crossref  mathscinet  isi
    15. A. E. Teretenkov, “Dynamics of Moments for Quadratic GKSL Generators”, Math. Notes, 106:1 (2019), 151–155  mathnet  crossref  crossref  mathscinet  isi  elib
    16. G. De Palma, “New lower bounds to the output entropy of multi-mode quantum Gaussian channels”, IEEE Trans. Inf. Theory, 65:9 (2019), 5959–5968  crossref  mathscinet  isi
    17. A. E. Teretenkov, “Irreversible quantum evolution with quadratic generator: review”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 22:4 (2019), 1930001  crossref  mathscinet  isi
    18. G. De Palma, “The squashed entanglement of the noiseless quantum Gaussian attenuator and amplifier”, J. Math. Phys., 60:11 (2019), 112201  crossref  mathscinet  isi
    19. G. De Palma, “The Wehrl entropy has Gaussian optimizers”, Lett. Math. Phys., 108:1 (2018), 97–116  crossref  mathscinet  zmath  isi  scopus
    20. S. Huber, R. König, “Coherent state coding approaches the capacity of non-Gaussian bosonic channels”, J. Phys. A, 51:18 (2018), 184001, 20 pp.  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1163
    Russian version PDF:312
    English version PDF:66
    References:122
    First page:38
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025