\Bibitem{BusSue14}
\by V.~I.~Buslaev, S.~P.~Suetin
\paper An extremal problem in potential theory
\jour Russian Math. Surveys
\yr 2014
\vol 69
\issue 5
\pages 915--917
\mathnet{http://mi.mathnet.ru/eng/rm9619}
\crossref{https://doi.org/10.1070/RM2014v069n05ABEH004919}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3400548}
\zmath{https://zbmath.org/?q=an:06422136}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014RuMaS..69..915B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000348143800003}
\elib{https://elibrary.ru/item.asp?id=22834468}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84921440765}
Linking options:
https://www.mathnet.ru/eng/rm9619
https://doi.org/10.1070/RM2014v069n05ABEH004919
https://www.mathnet.ru/eng/rm/v69/i5/p157
This publication is cited in the following 2 articles:
E. A. Rakhmanov, “The Gonchar-Stahl ρ2-theorem and associated directions in the theory of rational approximations of analytic functions”, Sb. Math., 207:9 (2016), 1236–1266
S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation”, Russian Math. Surveys, 70:5 (2015), 901–951