This work was supported by the Russian Foundation for Basic Research (grant no. 13-01-12430-офи-м2 and the programme "Leading Scientific Schools" (grant no. НШ-2900.2014.1).
Citation:
V. I. Buslaev, S. P. Suetin, “Existence of compact sets with minimum capacity in problems of rational approximation of multivalued analytic functions”, Russian Math. Surveys, 69:1 (2014), 159–161
\Bibitem{BusSue14}
\by V.~I.~Buslaev, S.~P.~Suetin
\paper Existence of compact sets with minimum capacity in problems of rational approximation of multivalued analytic functions
\jour Russian Math. Surveys
\yr 2014
\vol 69
\issue 1
\pages 159--161
\mathnet{http://mi.mathnet.ru/eng/rm9577}
\crossref{https://doi.org/10.1070/RM2014v069n01ABEH004881}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3222881}
\zmath{https://zbmath.org/?q=an:1290.31002}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014RuMaS..69..159B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000338728300005}
\elib{https://elibrary.ru/item.asp?id=21277027}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899758596}
Linking options:
https://www.mathnet.ru/eng/rm9577
https://doi.org/10.1070/RM2014v069n01ABEH004881
https://www.mathnet.ru/eng/rm/v69/i1/p169
This publication is cited in the following 5 articles:
V. I. Buslaev, “On a lower bound for the rate of convergence of multipoint Padé approximants of piecewise analytic functions”, Izv. Math., 85:3 (2021), 351–366
E. A. Rakhmanov, “The Gonchar-Stahl $\rho^2$-theorem and associated directions in the theory of rational approximations of analytic functions”, Sb. Math., 207:9 (2016), 1236–1266
V. I. Buslaev, S. P. Suetin, “On the existence of compacta of minimal capacity in the theory of rational approximation of multi-valued analytic functions”, J. Approx. Theory, 206 (2016), 48–67
V. I. Buslaev, S. P. Suetin, “On equilibrium problems related to the distribution of zeros of the Hermite–Padé polynomials”, Proc. Steklov Inst. Math., 290:1 (2015), 256–263
V. I. Buslaev, S. P. Suetin, “An extremal problem in potential theory”, Russian Math. Surveys, 69:5 (2014), 915–917