Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2013, Volume 68, Issue 5, Pages 954–956
DOI: https://doi.org/10.1070/RM2013v068n05ABEH004863
(Mi rm9546)
 

This article is cited in 12 scientific papers (total in 12 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

The Bernstein–von Mises theorem for regression based on Gaussian Processes

E. V. Burnaevabc, A. A. Zaytsevac, V. G. Spokoinydeb

a Institute for Information Transmission Problems of the Russian Academy of Sciences
b Moscow Institute of Physics and Technology (PreMoLab)
c Datadvance
d Weierstrass Institute
e Humboldt University, Berlin
References:
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 11.G34.31.0073
Russian Foundation for Basic Research 13-01-12447_офи_м2
13-01-00521
Presented: V. M. Buchstaber
Accepted: 17.08.2013
Russian version:
Uspekhi Matematicheskikh Nauk, 2013, Volume 68, Issue 5(413), Pages 179–180
DOI: https://doi.org/10.4213/rm9546
Bibliographic databases:
Document Type: Article
Language: English
Original paper language: Russian
Citation: E. V. Burnaev, A. A. Zaytsev, V. G. Spokoiny, “The Bernstein–von Mises theorem for regression based on Gaussian Processes”, Uspekhi Mat. Nauk, 68:5(413) (2013), 179–180; Russian Math. Surveys, 68:5 (2013), 954–956
Citation in format AMSBIB
\Bibitem{BurZaySpo13}
\by E.~V.~Burnaev, A.~A.~Zaytsev, V.~G.~Spokoiny
\paper The Bernstein--von Mises theorem for~regression based on Gaussian Processes
\jour Uspekhi Mat. Nauk
\yr 2013
\vol 68
\issue 5(413)
\pages 179--180
\mathnet{http://mi.mathnet.ru/rm9546}
\crossref{https://doi.org/10.4213/rm9546}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3155164}
\zmath{https://zbmath.org/?q=an:06255735}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013RuMaS..68..954B}
\elib{https://elibrary.ru/item.asp?id=21277004}
\transl
\jour Russian Math. Surveys
\yr 2013
\vol 68
\issue 5
\pages 954--956
\crossref{https://doi.org/10.1070/RM2013v068n05ABEH004863}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329123400006}
\elib{https://elibrary.ru/item.asp?id=21906534}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84891910926}
Linking options:
  • https://www.mathnet.ru/eng/rm9546
  • https://doi.org/10.1070/RM2013v068n05ABEH004863
  • https://www.mathnet.ru/eng/rm/v68/i5/p179
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:795
    Russian version PDF:405
    English version PDF:14
    References:64
    First page:72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024