Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2013, Volume 68, Issue 5, Pages 954–956
DOI: https://doi.org/10.1070/RM2013v068n05ABEH004863
(Mi rm9546)
 

This article is cited in 12 scientific papers (total in 12 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

The Bernstein–von Mises theorem for regression based on Gaussian Processes

E. V. Burnaevabc, A. A. Zaytsevac, V. G. Spokoinydeb

a Institute for Information Transmission Problems of the Russian Academy of Sciences
b Moscow Institute of Physics and Technology (PreMoLab)
c Datadvance
d Weierstrass Institute
e Humboldt University, Berlin
References:
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 11.G34.31.0073
Russian Foundation for Basic Research 13-01-12447_офи_м2
13-01-00521
Presented: V. M. Buchstaber
Accepted: 17.08.2013
Bibliographic databases:
Document Type: Article
Language: English
Original paper language: Russian
Citation: E. V. Burnaev, A. A. Zaytsev, V. G. Spokoiny, “The Bernstein–von Mises theorem for regression based on Gaussian Processes”, Russian Math. Surveys, 68:5 (2013), 954–956
Citation in format AMSBIB
\Bibitem{BurZaySpo13}
\by E.~V.~Burnaev, A.~A.~Zaytsev, V.~G.~Spokoiny
\paper The Bernstein--von Mises theorem for~regression based on Gaussian Processes
\jour Russian Math. Surveys
\yr 2013
\vol 68
\issue 5
\pages 954--956
\mathnet{http://mi.mathnet.ru/eng/rm9546}
\crossref{https://doi.org/10.1070/RM2013v068n05ABEH004863}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3155164}
\zmath{https://zbmath.org/?q=an:06255735}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013RuMaS..68..954B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329123400006}
\elib{https://elibrary.ru/item.asp?id=21277004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84891910926}
Linking options:
  • https://www.mathnet.ru/eng/rm9546
  • https://doi.org/10.1070/RM2013v068n05ABEH004863
  • https://www.mathnet.ru/eng/rm/v68/i5/p179
  • This publication is cited in the following 12 articles:
    1. Burnaev E.V., “Algorithmic Foundations of Predictive Analytics in Industrial Engineering Design”, J. Commun. Technol. Electron., 64:12 (2019), 1485–1492  crossref  isi
    2. Evgenii Egorov, Kirill Neklydov, Ruslan Kostoev, Evgeny Burnaev, Lecture Notes in Computer Science, 11554, Advances in Neural Networks – ISNN 2019, 2019, 409  crossref
    3. A. Kuleshov, A. Bernstein, E. Burnaev, “Kernel regression on manifold valued data”, 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (Dsaa), Proceedings of the International Conference on Data Science and Advanced Analytics, IEEE, 2018, 120–129  crossref  isi  scopus
    4. Kuleshov A., Bernstein A., Burnaev E., “Manifold Learning Regression With Non-Stationary Kernels”, Artificial Neural Networks in Pattern Recognition, Annpr 2018, Lecture Notes in Artificial Intelligence, 11081, eds. Pancioni L., Schwenker F., Trentin E., Springer International Publishing Ag, 2018, 152–164  crossref  mathscinet  isi
    5. A. Zaytsev, E. Burnaev, “Large scale variable fidelity surrogate modeling”, Ann. Math. Artif. Intell., 81:1-2 (2017), 167–186  crossref  mathscinet  zmath  isi  scopus
    6. E. Burnaev, I. Panin, B. Sudret, “Efficient design of experiments for sensitivity analysis based on polynomial chaos expansions”, Ann. Math. Artif. Intell., 81:1-2 (2017), 187–207  crossref  mathscinet  zmath  isi  scopus
    7. E. V. Burnaev, M. E. Panov, A. A. Zaytsev, “Regression on the basis of nonstationary Gaussian processes with Bayesian regularization”, J. Commun. Technol. Electron., 61:6 (2016), 661–671  crossref  isi  elib  scopus
    8. E. Burnaev, I. Nazarov, “Conformalized kernel ridge regression”, 15Th IEEE International Conference on Machine Learning and Applications, ICMLA 2016, IEEE, 2016, 45–52  crossref  isi  scopus
    9. M. Belyaev, E. Burnaev, E. Kapushev, M. Panov, P. Prikhodko, D. Vetrov, D. Yarotsky, “GTApprox: Surrogate modeling for industrial design”, Adv. Eng. Softw., 102 (2016), 29–39  crossref  isi  elib  scopus
    10. A. Zaytsev, Lecture Notes in Computer Science, 9653, Conformal and Probabilistic Prediction with Applications, 2016, 147  crossref
    11. Evgeny Burnaev, Ivan Nazarov, 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), 2016, 45  crossref
    12. A. A. Zaytsev, E. V. Burnaev, V. G. Spokoiny, “Properties of the Bayesian parameter estimation of a regression based on Gaussian processes”, J. Math. Sci., 203:6 (2014), 789–798  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:870
    Russian version PDF:433
    English version PDF:25
    References:76
    First page:72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025