Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2011, Volume 66, Issue 4, Pages 767–807
DOI: https://doi.org/10.1070/RM2011v066n04ABEH004755
(Mi rm9435)
 

This article is cited in 30 scientific papers (total in 30 papers)

Schur function expansions of KP $\tau$-functions associated to algebraic curves

J. Harnadab, V. Z. Enolskic

a Université de Montréal, Centre de recherches mathématiques
b Concordia University
c Institute of Magnetism, National Academy of Sciences of Ukraine, Kiev
References:
Abstract: The Schur function expansion of Sato–Segal–Wilson KP $\tau$-functions is reviewed. The case of $\tau$-functions related to algebraic curves of arbitrary genus is studied in detail. Explicit expressions for the Plücker coordinate coefficients appearing in the expansion are obtained in terms of directional derivatives of the Riemann $\theta$-function or Klein $\sigma$-function along the KP flow directions. By using the fundamental bi-differential it is shown how the coefficients can be expressed as polynomials in terms of Klein's higher-genus generalizations of Weierstrass' $\zeta$- and $\wp$-functions. The cases of genus-two hyperelliptic and genus-three trigonal curves are detailed as illustrations of the approach developed here.
Bibliography: 53 titles.
Keywords: $\tau$-functions, $\sigma$-functions, $\theta$-functions, Schur functions, KP equation, algebro-geometric solutions to soliton equations.
Received: 07.12.2010
Bibliographic databases:
Document Type: Article
UDC: 515.178.2+517.958+514
MSC: Primary 14H42, 35Q53; Secondary 14H70, 14H55
Language: English
Original paper language: Russian
Citation: J. Harnad, V. Z. Enolski, “Schur function expansions of KP $\tau$-functions associated to algebraic curves”, Russian Math. Surveys, 66:4 (2011), 767–807
Citation in format AMSBIB
\Bibitem{HarEno11}
\by J.~Harnad, V.~Z.~Enolski
\paper Schur function expansions of KP $\tau$-functions associated to algebraic curves
\jour Russian Math. Surveys
\yr 2011
\vol 66
\issue 4
\pages 767--807
\mathnet{http://mi.mathnet.ru//eng/rm9435}
\crossref{https://doi.org/10.1070/RM2011v066n04ABEH004755}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2883227}
\zmath{https://zbmath.org/?q=an:1231.14025}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011RuMaS..66..767H}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000296764100003}
\elib{https://elibrary.ru/item.asp?id=20423263}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80855147675}
Linking options:
  • https://www.mathnet.ru/eng/rm9435
  • https://doi.org/10.1070/RM2011v066n04ABEH004755
  • https://www.mathnet.ru/eng/rm/v66/i4/p137
  • This publication is cited in the following 30 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:780
    Russian version PDF:315
    English version PDF:24
    References:106
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024