Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2011, Volume 66, Issue 2, Pages 427–435
DOI: https://doi.org/10.1070/RM2011v066n02ABEH004744
(Mi rm9423)
 

This article is cited in 13 scientific papers (total in 14 papers)

A note on the Chevalley–Warning theorems

D. R. Heath-Brown

Mathematical Institute, University of Oxford, UK
References:
Abstract: Let $f_1,\dots,f_r$ be polynomials in $n$ variables, over the field $\mathbb{F}_q$, and suppose that their degrees are $d_1,\dots,d_r$. It was shown by Warning in 1935 that if $\mathscr N$ is the number of common zeros of the polynomials $f_i$, then $\mathscr N\geqslant q^{n-d}$. It is the main aim of the present paper to improve on this bound. When the set of common zeros does not form an affine linear subspace in $\mathbb{F}_q^n$, it is shown for example that $\mathscr N\geqslant2q^{n-d}$ if $q\geqslant4$, and that $\mathscr N\geqslant q^{n+1-d}/(n+2-d)$ if the $f_i$ are all homogeneous.
Bibliography: 5 titles.
Keywords: Chevalley–Warning theorems, polynomials, finite fields, zeros, lower bound, number of zeros, affine linear space.
Received: 29.09.2010
Russian version:
Uspekhi Matematicheskikh Nauk, 2011, Volume 66, Issue 2(398), Pages 223–232
DOI: https://doi.org/10.4213/rm9423
Bibliographic databases:
Document Type: Article
UDC: 511
MSC: 11G25
Language: English
Original paper language: Russian
Citation: D. R. Heath-Brown, “A note on the Chevalley–Warning theorems”, Russian Math. Surveys, 66:2 (2011), 427–435
Citation in format AMSBIB
\Bibitem{Hea11}
\by D.~R.~Heath-Brown
\paper A note on the Chevalley--Warning theorems
\jour Russian Math. Surveys
\yr 2011
\vol 66
\issue 2
\pages 427--435
\mathnet{http://mi.mathnet.ru//eng/rm9423}
\crossref{https://doi.org/10.1070/RM2011v066n02ABEH004744}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2847793}
\zmath{https://zbmath.org/?q=an:1247.11089}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011RuMaS..66..427H}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000294606300006}
\elib{https://elibrary.ru/item.asp?id=20423193}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79960184981}
Linking options:
  • https://www.mathnet.ru/eng/rm9423
  • https://doi.org/10.1070/RM2011v066n02ABEH004744
  • https://www.mathnet.ru/eng/rm/v66/i2/p223
    Erratum
    • Misprints
      Uspekhi Mat. Nauk, 2011, 66:3(399), 207–208
    Remarks
    This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:827
    Russian version PDF:366
    English version PDF:28
    References:65
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024