Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2011, Volume 66, Issue 2, Pages 271–367
DOI: https://doi.org/10.1070/RM2011v066n02ABEH004741
(Mi rm9421)
 

This article is cited in 6 scientific papers (total in 7 papers)

Polytopes, Fibonacci numbers, Hopf algebras, and quasi-symmetric functions

V. M. Buchstabera, N. Yu. Erokhovetsb

a Steklov Mathematical Institute, Russian Academy of Sciences
b M. V. Lomonosov Moscow State University
References:
Abstract: This survey is devoted to the classical problem of flag numbers of convex polytopes, and contains an exposition of results obtained on the basis of connections between the theory of convex polytopes and a number of modern directions of research.
Bibliography: 62 titles.
Keywords: flag numbers, flag polynomials, Leibniz–Hopf algebra, Lyndon words, Dehn–Sommerville relations, universal $G$-polynomial, $\boldsymbol{cd}$-index.
Received: 01.03.2011
Russian version:
Uspekhi Matematicheskikh Nauk, 2011, Volume 66, Issue 2(398), Pages 67–162
DOI: https://doi.org/10.4213/rm9421
Bibliographic databases:
Document Type: Article
UDC: 515.164.8
MSC: Primary 52-02; Secondary 05E05, 06A07, 16T05, 16E45, 52B05
Language: English
Original paper language: Russian
Citation: V. M. Buchstaber, N. Yu. Erokhovets, “Polytopes, Fibonacci numbers, Hopf algebras, and quasi-symmetric functions”, Russian Math. Surveys, 66:2 (2011), 271–367
Citation in format AMSBIB
\Bibitem{BucEro11}
\by V.~M.~Buchstaber, N.~Yu.~Erokhovets
\paper Polytopes, Fibonacci numbers, Hopf algebras, and quasi-symmetric functions
\jour Russian Math. Surveys
\yr 2011
\vol 66
\issue 2
\pages 271--367
\mathnet{http://mi.mathnet.ru//eng/rm9421}
\crossref{https://doi.org/10.1070/RM2011v066n02ABEH004741}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2847790}
\zmath{https://zbmath.org/?q=an:1239.52006}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011RuMaS..66..271B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000294606300003}
\elib{https://elibrary.ru/item.asp?id=20423180}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79960171467}
Linking options:
  • https://www.mathnet.ru/eng/rm9421
  • https://doi.org/10.1070/RM2011v066n02ABEH004741
  • https://www.mathnet.ru/eng/rm/v66/i2/p67
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1281
    Russian version PDF:543
    English version PDF:46
    References:98
    First page:140
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024