Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2011, Volume 66, Issue 1, Pages 35–62
DOI: https://doi.org/10.1070/RM2011v066n01ABEH004727
(Mi rm9405)
 

This article is cited in 2 scientific papers (total in 2 papers)

Riemann–Hilbert problem for scalar Fuchsian equations and related problems

I. V. Vyugin

A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
References:
Abstract: This paper is devoted to the Riemann–Hilbert problem for scalar Fuchsian equations: the problem of constructing a scalar Fuchsian equation from a representation of the monodromy and a family of singular points. The results of Bolibrukh [5], van der Put and Singer [7], and the author [10], generalized to a unified theorem provided with a new proof, form the main part of the paper. Some possible applications of these results are also discussed.
Bibliography: 16 titles.
Keywords: Fuchsian equations and systems, Riemann–Hilbert problem, monodromy, bundle, connection.
Received: 08.12.2010
Russian version:
Uspekhi Matematicheskikh Nauk, 2011, Volume 66, Issue 1(397), Pages 37–64
DOI: https://doi.org/10.4213/rm9405
Bibliographic databases:
Document Type: Article
UDC: 517.927.7
MSC: Primary 35Q15; Secondary 30E25, 31A25, 31B20, 34M50
Language: English
Original paper language: Russian
Citation: I. V. Vyugin, “Riemann–Hilbert problem for scalar Fuchsian equations and related problems”, Uspekhi Mat. Nauk, 66:1(397) (2011), 37–64; Russian Math. Surveys, 66:1 (2011), 35–62
Citation in format AMSBIB
\Bibitem{Vyu11}
\by I.~V.~Vyugin
\paper Riemann--Hilbert problem for scalar Fuchsian equations and related problems
\jour Uspekhi Mat. Nauk
\yr 2011
\vol 66
\issue 1(397)
\pages 37--64
\mathnet{http://mi.mathnet.ru/rm9405}
\crossref{https://doi.org/10.4213/rm9405}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2841685}
\zmath{https://zbmath.org/?q=an:1220.30050}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011RuMaS..66...35V}
\elib{https://elibrary.ru/item.asp?id=20423144}
\transl
\jour Russian Math. Surveys
\yr 2011
\vol 66
\issue 1
\pages 35--62
\crossref{https://doi.org/10.1070/RM2011v066n01ABEH004727}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000294605900002}
\elib{https://elibrary.ru/item.asp?id=17003982}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959543318}
Linking options:
  • https://www.mathnet.ru/eng/rm9405
  • https://doi.org/10.1070/RM2011v066n01ABEH004727
  • https://www.mathnet.ru/eng/rm/v66/i1/p37
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:819
    Russian version PDF:350
    English version PDF:26
    References:93
    First page:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024