Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2011, Volume 66, Issue 3, Pages 445–505
DOI: https://doi.org/10.1070/RM2011v066n03ABEH004748
(Mi rm9396)
 

This article is cited in 25 scientific papers (total in 25 papers)

Algebraic methods for solution of polyhedra

I. Kh. Sabitov

M. V. Lomonosov Moscow State University
References:
Abstract: By analogy with the solution of triangles, the solution of polyhedra means a theory and methods for calculating some geometric parameters of polyhedra in terms of other parameters of them. The main content of this paper is a survey of results on calculating the volumes of polyhedra in terms of their metrics and combinatorial structures. It turns out that a far-reaching generalization of Heron's formula for the area of a triangle to the volumes of polyhedra is possible, and it underlies the proof of the conjecture that the volume of a deformed flexible polyhedron remains constant.
Bibliography: 110 titles.
Keywords: polyhedra, combinatorial structure, metric, volume, bending, bellows conjecture, volume polynomials, generalization of Heron's formula.
Received: 08.07.2010
Bibliographic databases:
Document Type: Article
UDC: 514.772.35
MSC: Primary 51M20, 52C25; Secondary 51M10, 52B11
Language: English
Original paper language: Russian
Citation: I. Kh. Sabitov, “Algebraic methods for solution of polyhedra”, Russian Math. Surveys, 66:3 (2011), 445–505
Citation in format AMSBIB
\Bibitem{Sab11}
\by I.~Kh.~Sabitov
\paper Algebraic methods for solution of polyhedra
\jour Russian Math. Surveys
\yr 2011
\vol 66
\issue 3
\pages 445--505
\mathnet{http://mi.mathnet.ru//eng/rm9396}
\crossref{https://doi.org/10.1070/RM2011v066n03ABEH004748}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2859189}
\zmath{https://zbmath.org/?q=an:1230.52031}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011RuMaS..66..445S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000294606900001}
\elib{https://elibrary.ru/item.asp?id=20423202}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052708800}
Linking options:
  • https://www.mathnet.ru/eng/rm9396
  • https://doi.org/10.1070/RM2011v066n03ABEH004748
  • https://www.mathnet.ru/eng/rm/v66/i3/p3
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024