Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2010, Volume 65, Issue 1, Pages 1–94
DOI: https://doi.org/10.1070/RM2010v065n01ABEH004661
(Mi rm9341)
 

This article is cited in 16 scientific papers (total in 16 papers)

Functional geometric method for solving free boundary problems for harmonic functions

A. S. Demidovab

a M. V. Lomonosov Moscow State University
b Moscow Institute of Physics and Technology
References:
Abstract: A survey is given of results and approaches for a broad spectrum of free boundary problems for harmonic functions of two variables. The main results are obtained by the functional geometric method. The core of these methods is an interrelated analysis of the functional and geometric characteristics of the problems under consideration and of the corresponding non-linear Riemann–Hilbert problems. An extensive list of open questions is presented.
Bibliography: 124 titles.
Keywords: free boundaries, harmonic functions.
Received: 11.12.2009
Bibliographic databases:
Document Type: Article
UDC: 517.57
MSC: Primary 31A05, 35C20, 35R35, 35Q99, 76D27; Secondary 76W05, 82D10
Language: English
Original paper language: Russian
Citation: A. S. Demidov, “Functional geometric method for solving free boundary problems for harmonic functions”, Russian Math. Surveys, 65:1 (2010), 1–94
Citation in format AMSBIB
\Bibitem{Dem10}
\by A.~S.~Demidov
\paper Functional geometric method for solving free boundary problems for harmonic functions
\jour Russian Math. Surveys
\yr 2010
\vol 65
\issue 1
\pages 1--94
\mathnet{http://mi.mathnet.ru//eng/rm9341}
\crossref{https://doi.org/10.1070/RM2010v065n01ABEH004661}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2655243}
\zmath{https://zbmath.org/?q=an:1205.35343}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010RuMaS..65....1D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000280053700001}
\elib{https://elibrary.ru/item.asp?id=20359394}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954824540}
Linking options:
  • https://www.mathnet.ru/eng/rm9341
  • https://doi.org/10.1070/RM2010v065n01ABEH004661
  • https://www.mathnet.ru/eng/rm/v65/i1/p3
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024