Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2009, Volume 64, Issue 4, Pages 625–650
DOI: https://doi.org/10.1070/RM2009v064n04ABEH004629
(Mi rm9307)
 

This article is cited in 7 scientific papers (total in 7 papers)

Singular finite-gap operators and indefinite metrics

P. G. Grinevicha, S. P. Novikovab

a L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
b University of Maryland, College Park
References:
Abstract: In many problems the ‘real’ spectral data for periodic finite-gap operators (consisting of a Riemann surface with a distingulished ‘point at infinity’, a local parameter near this point, and a divisor of poles) generate operators with singular real coefficients. These operators are not self-adjoint in an ordinary Hilbert space of functions of a variable $x$ (with a positive metric). In particular, this happens for the Lamé operators with elliptic potential $n(n+1)\wp(x)$, whose wavefunctions were found by Hermite in the nineteenth century. However, ideas in [1]–[4] suggest that precisely such Baker–Akhiezer functions form a correct analogue of the discrete and continuous Fourier bases on Riemann surfaces. For genus $g>0$ these operators turn out to be symmetric with respect to an indefinite (not positive definite) inner product described in this paper. The analogue of the continuous Fourier transformation is an isometry in this inner product. A description is also given of the image of this Fourier transformation in the space of functions of $x\in\mathbb R$.
Bibliography: 24 titles.
Keywords: spectral theory, singular finite-gap operators, Lamé potentials, indefinite Hilbert spaces, continuous Fourier–Laurent bases on Riemann surfaces, Calogero–Moser models.
Received: 24.06.2009
Bibliographic databases:
Document Type: Article
UDC: 512.772+517.984
MSC: 35P05, 37K20
Language: English
Original paper language: Russian
Citation: P. G. Grinevich, S. P. Novikov, “Singular finite-gap operators and indefinite metrics”, Russian Math. Surveys, 64:4 (2009), 625–650
Citation in format AMSBIB
\Bibitem{GriNov09}
\by P.~G.~Grinevich, S.~P.~Novikov
\paper Singular finite-gap operators and indefinite metrics
\jour Russian Math. Surveys
\yr 2009
\vol 64
\issue 4
\pages 625--650
\mathnet{http://mi.mathnet.ru//eng/rm9307}
\crossref{https://doi.org/10.1070/RM2009v064n04ABEH004629}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2583572}
\zmath{https://zbmath.org/?q=an:1180.35384}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009RuMaS..64..625G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275492400002}
\elib{https://elibrary.ru/item.asp?id=20425300}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77951202193}
Linking options:
  • https://www.mathnet.ru/eng/rm9307
  • https://doi.org/10.1070/RM2009v064n04ABEH004629
  • https://www.mathnet.ru/eng/rm/v64/i4/p45
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1679
    Russian version PDF:381
    English version PDF:31
    References:144
    First page:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025