Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2008, Volume 63, Issue 6, Pages 1023–1029
DOI: https://doi.org/10.1070/RM2008v063n06ABEH004577
(Mi rm9250)
 

This article is cited in 7 scientific papers (total in 7 papers)

Limit theorem for trigonometric sums. Theory of curlicues

Ya. G. Sinaiab

a L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
b Princeton University
References:
Abstract: This paper is a discussion of the behaviour of the trigonometric sums $\sum\exp\{2\pi\alpha n^2\}$ and their limiting distribution as a function of $N$. The analysis is based upon another application of the renormalization group theory.
Received: 15.08.2008
Russian version:
Uspekhi Matematicheskikh Nauk, 2008, Volume 63, Issue 6(384), Pages 31–38
DOI: https://doi.org/10.4213/rm9250
Bibliographic databases:
Document Type: Article
UDC: 517.987.5
MSC: Primary 37A45; Secondary 11A55 60Fxx
Language: English
Original paper language: Russian
Citation: Ya. G. Sinai, “Limit theorem for trigonometric sums. Theory of curlicues”, Uspekhi Mat. Nauk, 63:6(384) (2008), 31–38; Russian Math. Surveys, 63:6 (2008), 1023–1029
Citation in format AMSBIB
\Bibitem{Sin08}
\by Ya.~G.~Sinai
\paper Limit theorem for trigonometric sums. Theory of curlicues
\jour Uspekhi Mat. Nauk
\yr 2008
\vol 63
\issue 6(384)
\pages 31--38
\mathnet{http://mi.mathnet.ru/rm9250}
\crossref{https://doi.org/10.4213/rm9250}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2492771}
\zmath{https://zbmath.org/?q=an:1172.37005}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008RuMaS..63.1023S}
\elib{https://elibrary.ru/item.asp?id=20423397}
\transl
\jour Russian Math. Surveys
\yr 2008
\vol 63
\issue 6
\pages 1023--1029
\crossref{https://doi.org/10.1070/RM2008v063n06ABEH004577}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267769700004}
\elib{https://elibrary.ru/item.asp?id=13565897}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65649115436}
Linking options:
  • https://www.mathnet.ru/eng/rm9250
  • https://doi.org/10.1070/RM2008v063n06ABEH004577
  • https://www.mathnet.ru/eng/rm/v63/i6/p31
  • Related presentations:
    This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1489
    Russian version PDF:512
    English version PDF:23
    References:113
    First page:83
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024