Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2008, Volume 63, Issue 6, Pages 1031–1078
DOI: https://doi.org/10.1070/RM2008v063n06ABEH004578
(Mi rm9244)
 

This article is cited in 8 scientific papers (total in 8 papers)

Topological methods in combinatorial geometry

R. N. Karasev

Moscow Institute of Physics and Technology
References:
Abstract: This survey is devoted to some results in the area of combinatorial and convex geometry, from classical theorems up to the latest contemporary results, mainly those results whose proofs make essential use of the methods of algebraic topology. Various generalizations of the Borsuk–Ulam theorem for a $(Z_p)^k$-action are explained in detail, along with applications to Knaster's problem about levels of a function on a sphere, and applications are discussed to the Lyusternik–Shnirel'man theory for estimating the number of critical points of a smooth function. An overview is given of the topological methods for estimating the chromatic number of graphs and hypergraphs, in theorems of Tverberg and van Kampen–Flores type. The author's results on the ‘dual’ analogues of the central point theorem and Tverberg's theorem are described. Results are considered on the existence of inscribed and circumscribed polytopes of special form for convex bodies and on the existence of billiard trajectories in a convex body. Results on partition of measures by hyperplanes and other partitions of Euclidean space are presented. For theorems of Helly type a brief overview is given of topological approaches connected with the nerve of a family of convex sets in Euclidean space. Also surveyed are theorems of Helly type for common flat transversals, and results using the topology of the Grassmann manifold and of the canonical vector bundle over it are considered in detail.
Received: 07.10.2008
Russian version:
Uspekhi Matematicheskikh Nauk, 2008, Volume 63, Issue 6(384), Pages 39–90
DOI: https://doi.org/10.4213/rm9244
Bibliographic databases:
Document Type: Article
UDC: 514.174+514.518
MSC: Primary 05-02, 52-02, 55-02; Secondary 05C15, 52A20, 52A35, 52C35, 55M20, 55M30, 55N91, 5
Language: English
Original paper language: Russian
Citation: R. N. Karasev, “Topological methods in combinatorial geometry”, Uspekhi Mat. Nauk, 63:6(384) (2008), 39–90; Russian Math. Surveys, 63:6 (2008), 1031–1078
Citation in format AMSBIB
\Bibitem{Kar08}
\by R.~N.~Karasev
\paper Topological methods in combinatorial geometry
\jour Uspekhi Mat. Nauk
\yr 2008
\vol 63
\issue 6(384)
\pages 39--90
\mathnet{http://mi.mathnet.ru/rm9244}
\crossref{https://doi.org/10.4213/rm9244}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2492772}
\zmath{https://zbmath.org/?q=an:05564980}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008RuMaS..63.1031K}
\elib{https://elibrary.ru/item.asp?id=20423399}
\transl
\jour Russian Math. Surveys
\yr 2008
\vol 63
\issue 6
\pages 1031--1078
\crossref{https://doi.org/10.1070/RM2008v063n06ABEH004578}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267769700005}
\elib{https://elibrary.ru/item.asp?id=13567740}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65649108967}
Linking options:
  • https://www.mathnet.ru/eng/rm9244
  • https://doi.org/10.1070/RM2008v063n06ABEH004578
  • https://www.mathnet.ru/eng/rm/v63/i6/p39
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1521
    Russian version PDF:725
    English version PDF:40
    References:123
    First page:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024