Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2004, Volume 59, Issue 6, Pages 1093–1116
DOI: https://doi.org/10.1070/RM2004v059n06ABEH000797
(Mi rm797)
 

This article is cited in 39 scientific papers (total in 39 papers)

Logarithmic equivalence of Welschinger and Gromov–Witten invariants

I. V. Itenberga, V. M. Kharlamova, E. I. Shustinb

a University Louis Pasteur
b Tel Aviv University, School of Mathematical Sciences
References:
Abstract: The Welschinger numbers, a kind of a real analogue of the Gromov–Witten numbers that count the complex rational curves through a given generic collection of points, bound from below the number of real rational curves for any generic collection of real points. Logarithmic equivalence of sequences is understood to mean the asymptotic equivalence of their logarithms. Such an equivalence is proved for the Welschinger and Gromov–Witten numbers of any toric Del Pezzo surface with its tautological real structure, in particular, of the projective plane, under the hypothesis that all, or almost all, the chosen points are real. A study is also made of the positivity of Welschinger numbers and their monotonicity with respect to the number of imaginary points.
Received: 27.07.2004
Bibliographic databases:
Document Type: Article
UDC: 512.77
MSC: Primary 14N10, 14N35; Secondary 53D45, 14M25, 14H15, 14J26
Language: English
Original paper language: Russian
Citation: I. V. Itenberg, V. M. Kharlamov, E. I. Shustin, “Logarithmic equivalence of Welschinger and Gromov–Witten invariants”, Russian Math. Surveys, 59:6 (2004), 1093–1116
Citation in format AMSBIB
\Bibitem{IteKhaShu04}
\by I.~V.~Itenberg, V.~M.~Kharlamov, E.~I.~Shustin
\paper Logarithmic equivalence of Welschinger and Gromov--Witten invariants
\jour Russian Math. Surveys
\yr 2004
\vol 59
\issue 6
\pages 1093--1116
\mathnet{http://mi.mathnet.ru//eng/rm797}
\crossref{https://doi.org/10.1070/RM2004v059n06ABEH000797}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2138469}
\zmath{https://zbmath.org/?q=an:1086.14047}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004RuMaS..59.1093I}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000228734800006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-17744375988}
Linking options:
  • https://www.mathnet.ru/eng/rm797
  • https://doi.org/10.1070/RM2004v059n06ABEH000797
  • https://www.mathnet.ru/eng/rm/v59/i6/p85
  • This publication is cited in the following 39 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:653
    Russian version PDF:267
    English version PDF:15
    References:60
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024