Abstract:
An ordinary differential equation of quite general form is
considered. It is shown how to find the following near a
finite or infinite value of the independent variable by using
algorithms of power geometry: (i) all power-law asymptotic
expressions for solutions of the equation; (ii) all power-logarithmic
expansions of solutions with power-law asymptotics;
(iii) all non-power-law (exponential or logarithmic)
asymptotic expressions for solutions of the equation; (iv) certain
exponentially small additional terms for a power-logarithmic
expansion of a solution that correspond to exponentially close
solutions. Along with the theory and algorithms, examples are
presented of calculations of the above objects for one and the same equation.
The main attention is paid to explanations of algorithms
for these calculations.
Citation:
A. D. Bruno, “Asymptotic behaviour and expansions of solutions of an ordinary differential equation”, Russian Math. Surveys, 59:3 (2004), 429–480
\Bibitem{Bru04}
\by A.~D.~Bruno
\paper Asymptotic behaviour and expansions of solutions of an ordinary differential equation
\jour Russian Math. Surveys
\yr 2004
\vol 59
\issue 3
\pages 429--480
\mathnet{http://mi.mathnet.ru/eng/rm736}
\crossref{https://doi.org/10.1070/RM2004v059n03ABEH000736}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2116535}
\zmath{https://zbmath.org/?q=an:1068.34054}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004RuMaS..59..429B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000224644800002}
\elib{https://elibrary.ru/item.asp?id=13448256}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-8644255981}
Linking options:
https://www.mathnet.ru/eng/rm736
https://doi.org/10.1070/RM2004v059n03ABEH000736
https://www.mathnet.ru/eng/rm/v59/i3/p31
This publication is cited in the following 160 articles:
Jaume Giné, Dmitry Sinelshchikov, “Integrability of Oscillators and Transcendental Invariant Curves”, Qual. Theory Dyn. Syst., 24:1 (2025)
Maria V. Demina, Varvara G. Nechitailo, “Integrability Properties of Generalized Liénard Differential Equations”, Qual. Theory Dyn. Syst., 24:1 (2025)
Isaac A. García, Jaume Giné, “Monodromic singularities without curves of zero angular speed”, MATH, 10:1 (2025), 1488
Isaac A. García, Jaume Giné, Ana Livia Rodero, “Dulac functions and monodromic singularities”, Journal of Mathematical Analysis and Applications, 2025, 129309
Hebai Chen, Lina Wang, Xiang Zhang, “A necessary and sufficient condition on algebraic limit cycles of a hybrid van der Pol-Rayleigh oscillator”, Journal of Differential Equations, 406 (2024), 255
N. V. Gaianov, A. V. Parusnikova, “On Formal Solutions to q-Difference Equations Containing Logarithms”, Sib Math J, 65:5 (2024), 1062
N. V. Gayanov, A. V. Parusnikova, “O soderzhaschikh logarifmy formalnykh resheniyakh q-raznostnykh uravnenii”, Sib. matem. zhurn., 65:5 (2024), 863–875
Renat Gontsov, Irina Goryuchkina, “On the existence and convergence of formal power series solutions of nonlinear Mahler equations”, Journal of Symbolic Computation, 2024, 102399
Y Paulina Mancilla-Martínez, Claudia Valls, “Integrability of special quadratic systems with invariant hyperbolas”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2024, 1
A. O. Remizov, “Singulyarnosti kvazilineinykh differentsialnykh uravnenii”, Dalnevost. matem. zhurn., 23:1 (2023), 85–105
M. V. Demina, D. O. Ilyukhin, “Invariantnye algebraicheskie mnogoobraziya dlya modeli dvoinoi konvektsii Raklidzha”, Sib. matem. zhurn., 64:5 (2023), 982–991
V. I. Anoshin, A. D. Beketova, A. V. Parusnikova, E. D. Prokopenko, “Convergence of formal solutions to the second member of the fourth Painlevé hierarchy in a neighborhood of zero”, Comput. Math. Math. Phys., 63:1 (2023), 86–95
S. A. Abramov, A. A. Ryabenko, D. E. Khmelnov, “Counterexamples to the assumption on the possibility of prolongation of truncated solutions of a truncated LODE”, Comput. Math. Math. Phys., 63:1 (2023), 69–76
M. V. Demina, D. O. Ilyukhin, “Invariant Algebraic Manifolds for the Rucklidge Model of Double Convection”, Sib Math J, 64:5 (2023), 1145
Alexander Bruno, Contemporary Mathematics, 782, Recent Trends in Formal and Analytic Solutions of Diff. Equations, 2023, 1
Maria V. Demina, “The Darboux Polynomials and Integrability of Polynomial Levinson–Smith Differential Equations”, Int. J. Bifurcation Chaos, 33:03 (2023)
Alexander D. Bruno, Alexander B. Batkhin, “Asymptotic Forms of Solutions to System of Nonlinear Partial Differential Equations”, Universe, 9:1 (2023), 35
Demina V M., Gine J., Valls C., “Puiseux Integrability of Differential Equations”, Qual. Theor. Dyn. Syst., 21:2 (2022), 35
Anoshin I V., Beketova A.D., Parusnikova V A., Romanov V K., “Asymptotic Expansions of Solutions to the Second Term of the Fourth Painleve Hierarchy”, Program. Comput. Softw., 48:1 (2022), 30–35
Gontsov R., Goryuchkina I., Lastra A., “On the Convergence of Generalized Power Series Solutions of Q-Difference Equations”, Aequ. Math., 96:3 (2022), 579–597