Uspekhi Matematicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Matematicheskikh Nauk, 1974, Volume 29, Issue 4(178), Pages 167–168 (Mi rm7219)  

This article is cited in 3 scientific papers (total in 3 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

A generalized Itô formula for an extended stochastic integral with respect to Poisson random measure

Yu. M. Kabanov
Full-text PDF (259 kB) Citations (3)
References:
Received: 11.02.1974
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. M. Kabanov, “A generalized Itô formula for an extended stochastic integral with respect to Poisson random measure”, Russian Math. Surveys, 29:4 (1974)
Citation in format AMSBIB
\Bibitem{Kab74}
\by Yu.~M.~Kabanov
\paper A~generalized It\^o formula for an extended stochastic integral with respect to Poisson random measure
\jour Russian Math. Surveys
\yr 1974
\vol 29
\issue 4
\mathnet{http://mi.mathnet.ru//eng/rm7219}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=397876}
\zmath{https://zbmath.org/?q=an:0308.60032}
Linking options:
  • https://www.mathnet.ru/eng/rm7219
  • https://www.mathnet.ru/eng/rm/v29/i4/p167
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:887
    Full-text PDF :349
    References:60
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024