Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1979, Volume 34, Issue 3, Pages 222–223
DOI: https://doi.org/10.1070/RM1979v034n03ABEH003997
(Mi rm7195)
 

This article is cited in 2 scientific papers (total in 2 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

Convex surfaces having bounded total curvature in pseudo-Euclidean space

D. D. Sokolov
References:
Received: 10.11.1978
Bibliographic databases:
Document Type: Article
Language: English
Original paper language: Russian
Citation: D. D. Sokolov, “Convex surfaces having bounded total curvature in pseudo-Euclidean space”, Russian Math. Surveys, 34:3 (1979), 222–223
Citation in format AMSBIB
\Bibitem{Sok79}
\by D.~D.~Sokolov
\paper Convex surfaces having bounded total curvature in pseudo-Euclidean space
\jour Russian Math. Surveys
\yr 1979
\vol 34
\issue 3
\pages 222--223
\mathnet{http://mi.mathnet.ru//eng/rm7195}
\crossref{https://doi.org/10.1070/RM1979v034n03ABEH003997}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=542255}
\zmath{https://zbmath.org/?q=an:0437.53054|0408.53028}
Linking options:
  • https://www.mathnet.ru/eng/rm7195
  • https://doi.org/10.1070/RM1979v034n03ABEH003997
  • https://www.mathnet.ru/eng/rm/v34/i3/p213
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024