Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2004, Volume 59, Issue 1, Pages 47–64
DOI: https://doi.org/10.1070/RM2004v059n01ABEH000700
(Mi rm700)
 

This article is cited in 10 scientific papers (total in 10 papers)

Turbulent boundary layers at very large Reynolds numbers

G. I. Barenblattab

a University of California, Berkeley
b P. P. Shirshov institute of Oceanology of RAS
References:
Abstract: Andrei Nikolaevich Kolmogorov firmly believed that in the absence of a rigorous self-contained theory of turbulent fluids and gases one must use hypotheses obtained by processing experimental data. This paper begins with a discussion of the hypothesis of complete self-similarity used in the proof of the widely known (Reynolds-number independent) von Kármán–Prandtl logarithmic law for the distribution of velocity in a turbulent shear flow. It is shown that this hypothesis has not been confirmed experimentally. Instead, a hypothesis of incomplete self-similarity is proposed which leads to a power-law dependence on the Reynolds number. It is shown that this law agrees well with experiments for the most important classes of turbulent shear flows (for flows in pipes and boundary layers).
Received: 20.06.2003
Bibliographic databases:
Document Type: Article
UDC: 519.248.6
MSC: Primary 76F10, 76F40; Secondary 76M55, 76M45
Language: English
Original paper language: Russian
Citation: G. I. Barenblatt, “Turbulent boundary layers at very large Reynolds numbers”, Russian Math. Surveys, 59:1 (2004), 47–64
Citation in format AMSBIB
\Bibitem{Bar04}
\by G.~I.~Barenblatt
\paper Turbulent boundary layers at very large Reynolds numbers
\jour Russian Math. Surveys
\yr 2004
\vol 59
\issue 1
\pages 47--64
\mathnet{http://mi.mathnet.ru//eng/rm700}
\crossref{https://doi.org/10.1070/RM2004v059n01ABEH000700}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2068842}
\zmath{https://zbmath.org/?q=an:1113.76041}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004RuMaS..59...47B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000222298300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-3042797629}
Linking options:
  • https://www.mathnet.ru/eng/rm700
  • https://doi.org/10.1070/RM2004v059n01ABEH000700
  • https://www.mathnet.ru/eng/rm/v59/i1/p45
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024