Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2004, Volume 59, Issue 1, Pages 11–25
DOI: https://doi.org/10.1070/RM2004v059n01ABEH000698
(Mi rm698)
 

This article is cited in 34 scientific papers (total in 34 papers)

On Hilbert's thirteenth problem and related questions

A. G. Vitushkin

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: Hilbert's thirteenth problem involves the study of solutions of algebraic equations. The object is to obtain a complexity estimate for an algebraic function. As of now, the problem remains open. There are only a few partial algebraic results in this connection, but at the same time the problem has stimulated a series of studies in the theory of functions with their subsequent applications. The most brilliant result in this cycle is Kolmogorov's theorem on superpositions of continuous functions.
Received: 17.06.2003
Russian version:
Uspekhi Matematicheskikh Nauk, 2004, Volume 59, Issue 1(355), Pages 11–24
DOI: https://doi.org/10.4213/rm698
Bibliographic databases:
Document Type: Article
UDC: 517.51+512
MSC: Primary 28B40; Secondary 68Q30, 26B45, 41A46, 68P30
Language: English
Original paper language: Russian
Citation: A. G. Vitushkin, “On Hilbert's thirteenth problem and related questions”, Uspekhi Mat. Nauk, 59:1(355) (2004), 11–24; Russian Math. Surveys, 59:1 (2004), 11–25
Citation in format AMSBIB
\Bibitem{Vit04}
\by A.~G.~Vitushkin
\paper On Hilbert's thirteenth problem and related questions
\jour Uspekhi Mat. Nauk
\yr 2004
\vol 59
\issue 1(355)
\pages 11--24
\mathnet{http://mi.mathnet.ru/rm698}
\crossref{https://doi.org/10.4213/rm698}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2068840}
\zmath{https://zbmath.org/?q=an:1067.26002}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004RuMaS..59...11V}
\transl
\jour Russian Math. Surveys
\yr 2004
\vol 59
\issue 1
\pages 11--25
\crossref{https://doi.org/10.1070/RM2004v059n01ABEH000698}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000222298300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-3042777242}
Linking options:
  • https://www.mathnet.ru/eng/rm698
  • https://doi.org/10.1070/RM2004v059n01ABEH000698
  • https://www.mathnet.ru/eng/rm/v59/i1/p11
  • This publication is cited in the following 34 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:4159
    Russian version PDF:1745
    English version PDF:120
    References:251
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024