Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2003, Volume 58, Issue 5, Pages 1042–1043
DOI: https://doi.org/10.1070/RM2003v058n05ABEH000669
(Mi rm669)
 

This article is cited in 21 scientific papers (total in 21 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

Characterization of the set of “ergodic directions” in Novikov's problem of quasi-electron orbits in normal metals

R. De Leo

University of Maryland
References:
Accepted: 05.09.2002
Bibliographic databases:
Document Type: Article
MSC: Primary 37C20; Secondary 81Q20
Language: English
Original paper language: Russian
Citation: R. De Leo, “Characterization of the set of “ergodic directions” in Novikov's problem of quasi-electron orbits in normal metals”, Russian Math. Surveys, 58:5 (2003), 1042–1043
Citation in format AMSBIB
\Bibitem{De 03}
\by R.~De Leo
\paper Characterization of the set of ``ergodic directions'' in Novikov's problem of quasi-electron orbits in normal metals
\jour Russian Math. Surveys
\yr 2003
\vol 58
\issue 5
\pages 1042--1043
\mathnet{http://mi.mathnet.ru//eng/rm669}
\crossref{https://doi.org/10.1070/RM2003v058n05ABEH000669}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2035722}
\zmath{https://zbmath.org/?q=an:1124.82320}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2003RuMaS..58.1042D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000189179400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-1542321401}
Linking options:
  • https://www.mathnet.ru/eng/rm669
  • https://doi.org/10.1070/RM2003v058n05ABEH000669
  • https://www.mathnet.ru/eng/rm/v58/i5/p197
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:479
    Russian version PDF:209
    English version PDF:6
    References:58
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024