Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1961, Volume 16, Issue 1, Pages 17–91
DOI: https://doi.org/10.1070/RM1961v016n01ABEH004099
(Mi rm6565)
 

This article is cited in 18 scientific papers (total in 20 papers)

Quasi-linear elliptic equations and variational problems with many independent variables

O. A. Ladyzhenskaya, N. N. Ural'tseva
Received: 12.07.1960
Bibliographic databases:
Document Type: Article
Language: English
Original paper language: Russian
Citation: O. A. Ladyzhenskaya, N. N. Ural'tseva, “Quasi-linear elliptic equations and variational problems with many independent variables”, Russian Math. Surveys, 16:1 (1961), 17–91
Citation in format AMSBIB
\Bibitem{LadUra61}
\by O.~A.~Ladyzhenskaya, N.~N.~Ural'tseva
\paper Quasi-linear elliptic equations and variational problems with many independent variables
\jour Russian Math. Surveys
\yr 1961
\vol 16
\issue 1
\pages 17--91
\mathnet{http://mi.mathnet.ru//eng/rm6565}
\crossref{https://doi.org/10.1070/RM1961v016n01ABEH004099}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=149075}
\zmath{https://zbmath.org/?q=an:0142.37602}
Linking options:
  • https://www.mathnet.ru/eng/rm6565
  • https://doi.org/10.1070/RM1961v016n01ABEH004099
  • https://www.mathnet.ru/eng/rm/v16/i1/p19
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025