Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2003, Volume 58, Issue 4, Pages 665–724
DOI: https://doi.org/10.1070/RM2003v058n04ABEH000642
(Mi rm642)
 

This article is cited in 50 scientific papers (total in 50 papers)

Multisingularities, cobordisms, and enumerative geometry

M. E. Kazarian

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: In this paper a universal formula is given for the characteristic classes dual to the cycles of multisingularities of holomorphic maps in terms of the so-called residual polynomials. The existence theorem of such a universal formula generalizes the existence theorem for the Thom polynomial to the case of multisingularities. An analogue of this formula for the case of Legendre singularities is given. The residual polynomials of singularities of low codimension are computed. In particular, applications of the formula give generalizations to the case $n>3$ of the classical results of Plücker and Salmon on enumeration of singularities of tangency of a smooth hypersurface in $\mathbb CP^n$ to projective subspaces.
Received: 14.02.2003
Bibliographic databases:
Document Type: Article
UDC: 512.761+515.164.15
MSC: Primary 14N10, 14C17; Secondary 55N22, 57R20, 32S20, 57R45
Language: English
Original paper language: Russian
Citation: M. E. Kazarian, “Multisingularities, cobordisms, and enumerative geometry”, Russian Math. Surveys, 58:4 (2003), 665–724
Citation in format AMSBIB
\Bibitem{Kaz03}
\by M.~E.~Kazarian
\paper Multisingularities, cobordisms, and enumerative geometry
\jour Russian Math. Surveys
\yr 2003
\vol 58
\issue 4
\pages 665--724
\mathnet{http://mi.mathnet.ru//eng/rm642}
\crossref{https://doi.org/10.1070/RM2003v058n04ABEH000642}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2042262}
\zmath{https://zbmath.org/?q=an:1062.58039}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2003RuMaS..58..665K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000187030700002}
\elib{https://elibrary.ru/item.asp?id=13416986}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0347528793}
Linking options:
  • https://www.mathnet.ru/eng/rm642
  • https://doi.org/10.1070/RM2003v058n04ABEH000642
  • https://www.mathnet.ru/eng/rm/v58/i4/p29
  • This publication is cited in the following 50 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:968
    Russian version PDF:451
    English version PDF:28
    References:90
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024