Uspekhi Matematicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Matematicheskikh Nauk, 1963, Volume 18, Issue 4(112), Pages 179–182 (Mi rm6391)  

This article is cited in 1 scientific paper (total in 1 paper)

Scientific notes and problems

An example of a completely continuous integral operator from $L_p$ to $L_p$ with positive kernel not belonging to $L_r$ $(r>1)$

D. V. Salekhov
Full-text PDF (284 kB) Citations (1)
Received: 10.10.1961
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. V. Salekhov, “An example of a completely continuous integral operator from $L_p$ to $L_p$ with positive kernel not belonging to $L_r$ $(r>1)$”, Russian Math. Surveys, 18:4 (1963)
Citation in format AMSBIB
\Bibitem{Sal63}
\by D.~V.~Salekhov
\paper An example of a~completely continuous integral operator from $L_p$ to $L_p$ with positive kernel not belonging to $L_r$ $(r>1)$
\jour Russian Math. Surveys
\yr 1963
\vol 18
\issue 4
\mathnet{http://mi.mathnet.ru//eng/rm6391}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=154149}
\zmath{https://zbmath.org/?q=an:0178.17502}
Linking options:
  • https://www.mathnet.ru/eng/rm6391
  • https://www.mathnet.ru/eng/rm/v18/i4/p179
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:399
    Full-text PDF :183
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024