Citation:
E. M. Landis, “Some problems of the qualitative theory of second order elliptic equations (case of several independent variables)”, Russian Math. Surveys, 18:1 (1963), 1–62
\Bibitem{Lan63}
\by E.~M.~Landis
\paper Some problems of the qualitative theory of second order elliptic equations (case of several independent variables)
\jour Russian Math. Surveys
\yr 1963
\vol 18
\issue 1
\pages 1--62
\mathnet{http://mi.mathnet.ru/eng/rm6301}
\crossref{https://doi.org/10.1070/RM1963v018n01ABEH004124}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=150437}
\zmath{https://zbmath.org/?q=an:0125.05802}
This publication is cited in the following 55 articles:
Igor Skrypnik, Yevgeniia Yevgenieva, “Harnack inequality for solutions of the p(x)-Laplace equation under the precise non-logarithmic Zhikov's conditions”, Calc. Var., 63:1 (2024)
E. B. Laneev, A. V. Klimishin, “O priblizhennom reshenii nekorrektno postavlennoi smeshannoi kraevoi zadachi dlya uravneniya Laplasa v tsilindricheskoi oblasti s odnorodnymi usloviyami vtorogo roda na bokovoi poverkhnosti tsilindra”, Vestnik rossiiskikh universitetov. Matematika, 29:146 (2024), 164–175
Ihor Skrypnik, Maria Savchenko, Yevgeniia Yevgenieva, “Weak Harnack inequality for unbounded solutions to the p(x)-Laplace equation under the precise non-logarithmic conditions”, Proc. IAMM NASU, 37 (2023), 48
Mariia Savchenko, Igor Skrypnik, Yevgeniia Yevgenieva, “Harnack's inequality for degenerate double phase parabolic equations under the non-logarithmic Zhikov's condition”, UMB, 20:1 (2023), 124
Mariia Savchenko, Igor Skrypnik, Yevgeniia Yevgenieva, “Harnack's inequality for degenerate double phase parabolic equations under the non-logarithmic Zhikov's condition”, J Math Sci, 273:3 (2023), 427
S. T. Krymskiǐ, N. D. Filonov, “On the rate of decrease at infinity of solutions to the Schrödinger equation in a half-cylinder”, St. Petersburg Math. J., 34:1 (2023), 79–92
D. E. Apushkinskaya, A. I. Nazarov, “The normal derivative lemma and surrounding issues”, Russian Math. Surveys, 77:2 (2022), 189–249
Igor I. Skrypnik, “Harnack's inequality for singular parabolic equations with generalized Orlicz growth under the non-logarithmic Zhikov's condition”, J. Evol. Equ., 22:2 (2022)
Bendikov A. Grigor'yan A. Hu E. Hu J., “Heat Kernels and Non-Local Dirichlet Forms on Ultrametric Spaces”, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 22:1 (2021), 399–461
Carlos Kenig, Jiuyi Zhu, “Propagation of Smallness in Elliptic Periodic Homogenization”, SIAM J. Math. Anal., 53:1 (2021), 111
Tynysbek Sh. Kalmenov, Makhmud A. Sadybekov, Berikbol T. Torebek, “A criterion of solvability of the elliptic Cauchy problem in a multi-dimensional cylindrical domain”, Complex Variables and Elliptic Equations, 64:3 (2019), 398
Alexander Logunov, “Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure”, Ann. of Math. (2), 187:1 (2018)
A. I. Ibragimov, A. I. Nazarov, “On Phragmén — Lindelöf principle for Non-divergence Type Elliptic Equations and Mixed Boundary conditions”, Matematicheskaya fizika i kompyuternoe modelirovanie, 20:3 (2017), 65–76
S. V. Pikulin, “Convergence of a family of solutions to a Fujita-type equation in domains with cavities”, Comput. Math. Math. Phys., 56:11 (2016), 1872–1900
Gabor Lippner, Dan Mangoubi, “Harmonic functions on the lattice: Absolute monotonicity and propagation of smallness”, Duke Math. J., 164:13 (2015)
Zhang Songyan, “Three-sphere inequalities for second order singular partial differential equations”, Acta Mathematica Scientia, 30:3 (2010), 993
Xiangxing Tao, “Quantitative unique continuation for Neumann problems of elliptic equations with weight”, Math Meth Appl Sci, 2009, n/a
Herbert Koch, Daniel Tataru, “Carleman Estimates and Unique Continuation for Second Order Parabolic Equations with Nonsmooth Coefficients”, Communications in Partial Differential Equations, 34:4 (2009), 305
Sergio Vessella, “Quantitative estimates of unique continuation for parabolic equations, determination of unknown time-varying boundaries and optimal stability estimates”, Inverse Probl, 24:2 (2008), 023001
A. A. Kon'kov, “The behaviour of solutions of elliptic inequalities that are non-linear with respect to the highest derivatives”, Izv. Math., 71:1 (2007), 15–51