Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1968, Volume 23, Issue 6, Pages 53–124
DOI: https://doi.org/10.1070/RM1968v023n06ABEH001251
(Mi rm5684)
 

This article is cited in 75 scientific papers (total in 75 papers)

Duality of convex functions and extremum problems

A. D. Ioffe, V. M. Tikhomirov
References:
Abstract: Let $\mathfrak{X}$ be a real linear topological space and $\mathfrak{Y}$ its conjugate. We denote by $\langle x,y\rangle$ the value of the linear functional $y\in\mathfrak{Y}$ on the element $x\in\mathfrak{X}$. For real functions $f(x)$ on $\mathfrak{X}$ we introduce two operations: the ordinary sum
$$ f_1(x)+f_2(x) $$
and the convolution
$$ f_1\oplus f_2(x)=\inf_{x_1+x_2=x}(f_1(x_1)+f_2(x_2)), $$
and also the transformation associating with $f(x)$ its dual function on $\mathfrak{Y}$ which is obtained from $f(x)$ by the formula
$$ f^*(y)=\sup_{x\in\mathfrak{X}}(\langle x,y\rangle-f(x)). $$
The following propositions hold.
1) The operation ${}^*$ is involutory:
$$ f^{**}=f $$
if and only if $ f(x)$ is a convex function and lower semicontinuous on $\mathfrak{X}$.
2) $(f_1\oplus f_2)^*=f_1^*+f_2^*$.
3) Under certain additional assumptions
$$ (f_1+f_2)^*=f_1^*\oplus f_2^*. $$
These theorems were proved for a finite-dimensional space by Fenchel [93] and in the general case by Moreau [60].
Chapter I is concerned with proving these theorems and generalizations of them.
Chapter II is concerned with their application to mathematical programming and the calculus of variations. Proofs are given of very general duality theorems of mathematical programming and saddle point theorems. Constructions are then given which lead to extensions of optimal control problems, and an existence theorem is proved for these problems.
Chapter III contains an investigation of problems of approximating $x\in\mathfrak{X}$ and the set $C\subset\mathfrak{X}$ by an approximating set $A\subset\mathfrak{X}$ using methods of the theory of duality of convex functions. Duality theorems for some geometric characteristics of sets in $\mathfrak{X}$ are derived at the end of the chapter.
Bibliographic databases:
Document Type: Article
UDC: 517.51+519.3+519.95
Language: English
Original paper language: Russian
Citation: A. D. Ioffe, V. M. Tikhomirov, “Duality of convex functions and extremum problems”, Russian Math. Surveys, 23:6 (1968), 53–124
Citation in format AMSBIB
\Bibitem{IofTik68}
\by A.~D.~Ioffe, V.~M.~Tikhomirov
\paper Duality of convex functions and extremum problems
\jour Russian Math. Surveys
\yr 1968
\vol 23
\issue 6
\pages 53--124
\mathnet{http://mi.mathnet.ru//eng/rm5684}
\crossref{https://doi.org/10.1070/RM1968v023n06ABEH001251}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=288601}
\zmath{https://zbmath.org/?q=an:0167.42202|0191.13101}
Linking options:
  • https://www.mathnet.ru/eng/rm5684
  • https://doi.org/10.1070/RM1968v023n06ABEH001251
  • https://www.mathnet.ru/eng/rm/v23/i6/p51
  • This publication is cited in the following 75 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:2085
    Russian version PDF:1026
    English version PDF:86
    References:133
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024