Uspekhi Matematicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Matematicheskikh Nauk, 1968, Volume 23, Issue 3(141), Pages 181–182 (Mi rm5639)  

This article is cited in 1 scientific paper (total in 1 paper)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

Infinite dimensional analogs of a linear programming problem, and the saddle point theorem

V. L. Levin
Full-text PDF (248 kB) Citations (1)
References:
Received: 14.10.1967
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. L. Levin, “Infinite dimensional analogs of a linear programming problem, and the saddle point theorem”, Uspekhi Mat. Nauk, 23:3(141) (1968), 181–182
Citation in format AMSBIB
\Bibitem{Lev68}
\by V.~L.~Levin
\paper Infinite dimensional analogs of a~linear programming problem, and the saddle point theorem
\jour Uspekhi Mat. Nauk
\yr 1968
\vol 23
\issue 3(141)
\pages 181--182
\mathnet{http://mi.mathnet.ru/rm5639}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=231617}
\zmath{https://zbmath.org/?q=an:0164.19701}
Linking options:
  • https://www.mathnet.ru/eng/rm5639
  • https://www.mathnet.ru/eng/rm/v23/i3/p181
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:406
    Full-text PDF :155
    References:45
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024