Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2002, Volume 57, Issue 4, Pages 785–799
DOI: https://doi.org/10.1070/RM2002v057n04ABEH000536
(Mi rm536)
 

This article is cited in 12 scientific papers (total in 12 papers)

Analyticity of solutions for randomly forced two-dimensional Navier–Stokes equations

A. R. Shirikyan

Heriot Watt University
References:
Abstract: A study is made of randomly forced two-dimensional Navier–Stokes equations with periodic boundary conditions. Under the assumption that the random forcing is analytic in the spatial variables and is a white noise in the time, it is proved that a large class of solutions, which contains all stationary solutions with finite energy, admits analytic continuation to a small complex neighbourhood of the torus. Moreover, a lower bound is obtained for the radius of analyticity in terms of the viscosity $\nu$, and it is shown that the Kolmogorov dissipation scale can be asymptotically estimated below by $\nu^{2+\delta}$ for any $\delta>0$.
Received: 05.04.2002
Bibliographic databases:
Document Type: Article
UDC: 517.95
MSC: Primary 35Q30, 35R60; Secondary 60H15, 35B65, 76D05
Language: English
Original paper language: Russian
Citation: A. R. Shirikyan, “Analyticity of solutions for randomly forced two-dimensional Navier–Stokes equations”, Russian Math. Surveys, 57:4 (2002), 785–799
Citation in format AMSBIB
\Bibitem{Shi02}
\by A.~R.~Shirikyan
\paper Analyticity of solutions for randomly forced two-dimensional Navier--Stokes equations
\jour Russian Math. Surveys
\yr 2002
\vol 57
\issue 4
\pages 785--799
\mathnet{http://mi.mathnet.ru//eng/rm536}
\crossref{https://doi.org/10.1070/RM2002v057n04ABEH000536}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1942120}
\zmath{https://zbmath.org/?q=an:1051.35050}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2002RuMaS..57..785S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000179830900006}
\elib{https://elibrary.ru/item.asp?id=14033390}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036664245}
Linking options:
  • https://www.mathnet.ru/eng/rm536
  • https://doi.org/10.1070/RM2002v057n04ABEH000536
  • https://www.mathnet.ru/eng/rm/v57/i4/p151
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024