Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2002, Volume 57, Issue 4, Pages 693–708
DOI: https://doi.org/10.1070/RM2002v057n04ABEH000533
(Mi rm533)
 

This article is cited in 154 scientific papers (total in 155 papers)

How to recognize constant functions. Connections with Sobolev spaces

H. Brezis

Université Pierre & Marie Curie, Paris VI
References:
Abstract: A criterion for a function $f\in L^p$ to belong to $W^{1,p}$ $(p>1)$ or to $BV$ $(p=1)$ is given. Various integral conditions under which a measurable function is constant are discussed.
Received: 05.04.2002
Bibliographic databases:
Document Type: Article
UDC: 517.98
MSC: 46E35
Language: English
Original paper language: Russian
Citation: H. Brezis, “How to recognize constant functions. Connections with Sobolev spaces”, Russian Math. Surveys, 57:4 (2002), 693–708
Citation in format AMSBIB
\Bibitem{Bre02}
\by H.~Brezis
\paper How to recognize constant functions. Connections with Sobolev spaces
\jour Russian Math. Surveys
\yr 2002
\vol 57
\issue 4
\pages 693--708
\mathnet{http://mi.mathnet.ru//eng/rm533}
\crossref{https://doi.org/10.1070/RM2002v057n04ABEH000533}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1942116}
\zmath{https://zbmath.org/?q=an:1072.46020}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2002RuMaS..57..693B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000179830900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036664248}
Linking options:
  • https://www.mathnet.ru/eng/rm533
  • https://doi.org/10.1070/RM2002v057n04ABEH000533
  • https://www.mathnet.ru/eng/rm/v57/i4/p59
  • This publication is cited in the following 155 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1699
    Russian version PDF:546
    English version PDF:85
    References:96
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024