\Bibitem{Lys92}
\by I.~G.~Lysenok
\paper The infinitude of Burnside groups of period~$2k$ for~$k\ge 13$
\jour Russian Math. Surveys
\yr 1992
\vol 47
\issue 2
\pages 229--230
\mathnet{http://mi.mathnet.ru/eng/rm4503}
\crossref{https://doi.org/10.1070/RM1992v047n02ABEH000888}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1185294}
\zmath{https://zbmath.org/?q=an:0822.20043}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1992RuMaS..47..229L}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992KG26300012}
Linking options:
https://www.mathnet.ru/eng/rm4503
https://doi.org/10.1070/RM1992v047n02ABEH000888
https://www.mathnet.ru/eng/rm/v47/i2/p201
This publication is cited in the following 6 articles:
I. A. Ivanov-Pogodaev, “A semigroup of paths on a sequence of uniformly elliptic complexes”, Funct. Anal. Appl., 57:2 (2023), 117–142
I. A. Ivanov-Pogodaev, A. Ya. Kanel-Belov, “Finitely presented nilsemigroups: complexes with the property of uniform ellipticity”, Izv. Math., 85:6 (2021), 1146–1180
S. I. Adian, “The Burnside problem and related topics”, Russian Math. Surveys, 65:5 (2010), 805–855
I. G. Lysenok, “Infinite Burnside groups of even exponent”, Izv. Math., 60:3 (1996), 453–654
V.S. Guba, S.J. Pride, “Low-dimensional (co)homology of free Burnside monoids”, Journal of Pure and Applied Algebra, 108:1 (1996), 61
S. Margolis, J. Meakin, M. Sapir, Semigroups, Formal Languages and Groups, 1995, 147