Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1992, Volume 47, Issue 1, Pages 117–189
DOI: https://doi.org/10.1070/RM1992v047n01ABEH000863
(Mi rm4472)
 

This article is cited in 15 scientific papers (total in 15 papers)

Euler equations on finite-dimensional Lie coalgebras, arising in problems of mathematical physics

O. I. Bogoyavlenskii

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Received: 17.10.1991
Bibliographic databases:
Document Type: Article
UDC: 539.2
Language: English
Original paper language: Russian
Citation: O. I. Bogoyavlenskii, “Euler equations on finite-dimensional Lie coalgebras, arising in problems of mathematical physics”, Russian Math. Surveys, 47:1 (1992), 117–189
Citation in format AMSBIB
\Bibitem{Bog92}
\by O.~I.~Bogoyavlenskii
\paper Euler equations on finite-dimensional Lie coalgebras, arising in problems of mathematical physics
\jour Russian Math. Surveys
\yr 1992
\vol 47
\issue 1
\pages 117--189
\mathnet{http://mi.mathnet.ru/eng/rm4472}
\crossref{https://doi.org/10.1070/RM1992v047n01ABEH000863}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1171864}
\zmath{https://zbmath.org/?q=an:0794.58019}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1992RuMaS..47..117B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992KE77300003}
Linking options:
  • https://www.mathnet.ru/eng/rm4472
  • https://doi.org/10.1070/RM1992v047n01ABEH000863
  • https://www.mathnet.ru/eng/rm/v47/i1/p107
  • This publication is cited in the following 15 articles:
    1. Sean R. Dawson, Holger R. Dullin, Diana M.H. Nguyen, “The Harmonic Lagrange Top and the Confluent Heun Equation”, Regul. Chaotic Dyn., 27:4 (2022), 443–459  mathnet  crossref  mathscinet
    2. M.V.. SHAMOLIN, “VARIETY OF THE CASES OF INTEGRABILITY IN DYNAMICS OF A SYMMETRIC 2D-, 3D- AND 4D-RIGID BODY IN A NONCONSERVATIVE FIELD”, Int. J. Str. Stab. Dyn, 2013, 1340011  crossref
    3. Yu.B. Suris, Lecture Notes in Physics, 644, Discrete Integrable Systems, 2004, 111  crossref
    4. E. I. Bogdanov, “Integrable Systems on Phase Spaces with a Nonflat Metric”, Theoret. and Math. Phys., 129:3 (2001), 1618–1630  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. Yuri B Suris, “Integrable Discretizations of Some Cases of the Rigid Body Dynamics”, Journal of Nonlinear Mathematical Physics, 8:4 (2001), 534  crossref
    6. Yongtang Wu, Dianlou Du, “On the Lie–Poisson structure of the nonlinearized discrete eigenvalue problem”, J Math Phys (N Y ), 41:8 (2000), 5832  crossref  mathscinet  zmath  isi
    7. Dianlou Du, Cewen Cao, Yong-Tang Wu, “The nonlinearized eigenvalue problem of the Toda hierarchy in the Lie–Poisson framework”, Physica A: Statistical Mechanics and its Applications, 285:3-4 (2000), 332  crossref
    8. A. R. Galper, T. Miloh, “Hydrodynamics and stability of a deformable body moving in the proximity of interfaces”, Phys Fluids, 11:4 (1999), 795  crossref  mathscinet  zmath  adsnasa  isi
    9. Andrzej J. Maciejewski, Hamiltonian Systems with Three or More Degrees of Freedom, 1999, 475  crossref
    10. Andrzej J. Maciejewski, Sasho I. Popov, “Invariants of homogeneous ordinary differential equations”, Reports on Mathematical Physics, 41:3 (1998), 287  crossref
    11. Andrzej J. Maciejewski, “Reduction, relative equilibria and potential in the two rigid bodies problem”, Celestial Mech Dyn Astr, 63:1 (1995), 1  crossref  mathscinet  zmath  isi
    12. Andrzej J. Maciejewski, NATO ASI Series, 336, From Newton to Chaos, 1995, 503  crossref
    13. E. I. Bogdanov, “Spatially distributed classical Lagrangian mechanics”, Theoret. and Math. Phys., 101:3 (1994), 1419–1421  mathnet  crossref  mathscinet  zmath  isi
    14. O. I. Bogoyavlenskij, “General integrable problems of classical mechanics”, Commun.Math. Phys., 153:1 (1993), 23  crossref
    15. O. I. Bogoyavlenskii, “Integrable problems of the dynamics of coupled rigid bodies”, Russian Acad. Sci. Izv. Math., 41:3 (1993), 395–416  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:729
    Russian version PDF:268
    English version PDF:33
    References:100
    First page:3
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025