Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1974, Volume 29, Issue 2, Pages 170–175
DOI: https://doi.org/10.1070/RM1974v029n02ABEH003839
(Mi rm4361)
 

This article is cited in 2 scientific papers (total in 2 papers)

Functions whose gradient is bounded by the reciprocal distance from the boundary of their domain

F. John
References:
Received: 14.08.1973
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: 26Dxx, 35B05, 35Jxx
Language: English
Original paper language: Russian
Citation: F. John, “Functions whose gradient is bounded by the reciprocal distance from the boundary of their domain”, Russian Math. Surveys, 29:2 (1974), 170–175
Citation in format AMSBIB
\Bibitem{Joh74}
\by F.~John
\paper Functions whose gradient is bounded by the reciprocal distance from the boundary of their domain
\jour Russian Math. Surveys
\yr 1974
\vol 29
\issue 2
\pages 170--175
\mathnet{http://mi.mathnet.ru//eng/rm4361}
\crossref{https://doi.org/10.1070/RM1974v029n02ABEH003839}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=404540}
\zmath{https://zbmath.org/?q=an:0296.26014|0303.26011}
Linking options:
  • https://www.mathnet.ru/eng/rm4361
  • https://doi.org/10.1070/RM1974v029n02ABEH003839
  • https://www.mathnet.ru/eng/rm/v29/i2/p166
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024