Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1974, Volume 29, Issue 2, Pages 10–50
DOI: https://doi.org/10.1070/RM1974v029n02ABEH003846
(Mi rm4352)
 

This article is cited in 100 scientific papers (total in 101 papers)

Normal forms of functions in neighbourhoods of degenerate critical points

V. I. Arnol'd
References:
Abstract: An analysis of the normal forms to which functions can be reduced in neighbourhoods of degenerate critical points shows that many of them are quasihomogeneous or semiquasihomogeneous. A semiquasihomogeneous function is a sum of a quasihomogeneous (or weighted homogeneous) polynomial with an isolated critical point and summands of a higher degree of quasihomogeneity. The normal form to which a semiquasihomogeneous function can be reduced is described in terms of the local ring of the gradient mapping given by the quasihomogeneous part of the function. The number of parameters in this normal form is called the inner modality of the quasihomogeneous part. A classification is given of all quasihomogeneous critical points of inner modality 1: up to stable equivalence they are exhausted by three one-parameter families of parabolic singularities and 14 exceptional polynomials, 8 of which are functions of two variables, and 6 functions of three variables.
Received: 28.09.1973
Russian version:
Uspekhi Matematicheskikh Nauk, 1974, Volume 29, Issue 2(176), Pages 11–49
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: 58K05, 58K50, 57R70
Language: English
Original paper language: Russian
Citation: V. I. Arnol'd, “Normal forms of functions in neighbourhoods of degenerate critical points”, Uspekhi Mat. Nauk, 29:2(176) (1974), 11–49; Russian Math. Surveys, 29:2 (1974), 10–50
Citation in format AMSBIB
\Bibitem{Arn74}
\by V.~I.~Arnol'd
\paper Normal forms of functions in neighbourhoods of degenerate critical points
\jour Uspekhi Mat. Nauk
\yr 1974
\vol 29
\issue 2(176)
\pages 11--49
\mathnet{http://mi.mathnet.ru/rm4352}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=516034}
\zmath{https://zbmath.org/?q=an:0298.57022|0304.57018}
\transl
\jour Russian Math. Surveys
\yr 1974
\vol 29
\issue 2
\pages 10--50
\crossref{https://doi.org/10.1070/RM1974v029n02ABEH003846}
Linking options:
  • https://www.mathnet.ru/eng/rm4352
  • https://doi.org/10.1070/RM1974v029n02ABEH003846
  • https://www.mathnet.ru/eng/rm/v29/i2/p11
  • This publication is cited in the following 101 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1960
    Russian version PDF:822
    English version PDF:117
    References:134
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024