Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1975, Volume 30, Issue 4, Pages 115–155
DOI: https://doi.org/10.1070/RM1975v030n04ABEH001514
(Mi rm4234)
 

This article is cited in 9 scientific papers (total in 10 papers)

Choquet boundaries in $K$-spaces

S. S. Kutateladze
References:
Abstract: The article contains an account of the fundamental methods of Choquet theory. Decompositions, maximal operators, projectors, Choquet and Shilov boundaries are essential research tools in the fields of convex analysis, potential theory, approximation theory, geometry of convex surfaces, and so on.
The account is given in terms of the theory of Kantorovich spaces and the framework of a new and very general approach, which covers the majority of known constructions of the theory of integral representations.
Received: 22.07.1974
Bibliographic databases:
Document Type: Article
UDC: 513.88
MSC: 46A55, 54D50, 28C05
Language: English
Original paper language: Russian
Citation: S. S. Kutateladze, “Choquet boundaries in $K$-spaces”, Russian Math. Surveys, 30:4 (1975), 115–155
Citation in format AMSBIB
\Bibitem{Kut75}
\by S.~S.~Kutateladze
\paper Choquet boundaries in $K$-spaces
\jour Russian Math. Surveys
\yr 1975
\vol 30
\issue 4
\pages 115--155
\mathnet{http://mi.mathnet.ru//eng/rm4234}
\crossref{https://doi.org/10.1070/RM1975v030n04ABEH001514}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=402457}
\zmath{https://zbmath.org/?q=an:0308.46010|0331.46011}
Linking options:
  • https://www.mathnet.ru/eng/rm4234
  • https://doi.org/10.1070/RM1975v030n04ABEH001514
  • https://www.mathnet.ru/eng/rm/v30/i4/p107
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:601
    Russian version PDF:220
    English version PDF:18
    References:64
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024