Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1975, Volume 30, Issue 1, Pages 177–202
DOI: https://doi.org/10.1070/RM1975v030n01ABEH001403
(Mi rm4140)
 

This article is cited in 30 scientific papers (total in 31 papers)

What is the hamiltonian formalism?

A. M. Vinogradov, I. S. Krasil'shchik
References:
Abstract: In this paper the basic concepts of the classical Hamiltonian formalism are translated into algebraic language. We treat the Hamiltonian formalism as a constituent part of the general theory of linear differential operators on commutative rings with identity. We take particular care in motivating the concepts we introduce. As an illustration of the theory presented here, we examine the Hamiltonian formalism in Lie algebras. We conclude by presenting a version of the “orbit method” in the theory of representations of Lie groups, which is a natural corollary of our view of the Hamiltonian formalism.
Received: 19.06.1974
Bibliographic databases:
Document Type: Article
UDC: 517.4
Language: English
Original paper language: Russian
Citation: A. M. Vinogradov, I. S. Krasil'shchik, “What is the hamiltonian formalism?”, Russian Math. Surveys, 30:1 (1975), 177–202
Citation in format AMSBIB
\Bibitem{VinKra75}
\by A.~M.~Vinogradov, I.~S.~Krasil'shchik
\paper What is the hamiltonian formalism?
\jour Russian Math. Surveys
\yr 1975
\vol 30
\issue 1
\pages 177--202
\mathnet{http://mi.mathnet.ru//eng/rm4140}
\crossref{https://doi.org/10.1070/RM1975v030n01ABEH001403}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=650307}
\zmath{https://zbmath.org/?q=an:0327.70006}
Linking options:
  • https://www.mathnet.ru/eng/rm4140
  • https://doi.org/10.1070/RM1975v030n01ABEH001403
  • https://www.mathnet.ru/eng/rm/v30/i1/p173
  • This publication is cited in the following 31 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024