Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1976, Volume 31, Issue 5, Pages 192–197
DOI: https://doi.org/10.1070/RM1976v031n05ABEH004196
(Mi rm3967)
 

On Aleksandrov's obstruction theorem

I. A. Shvedov
References:
Abstract: The following two results ate proved.
Theorem 1. {\it Let $X$ be a subspace of a locally compact metric space with $\dim_{\mathscr G}X=p$, and $A$ the subset consisting of all points $a\in X$ such that $H^p(X,X\setminus U;\mathscr G)\ne 0$ for every sufficiently small open ball $U$ with centre at $a$. Then $\dim_{\mathscr G}A=p$}.
Theorem 2. {\it Let $X$ be a metric space, $\dim_{\mathscr G}X=p$, and $Y$ the subspace of $X$ consisting of all points $y\in X$ that have a basis of open neighbourhoods $\mathscr B(y)$ точки $y$ such that for each $U\in \mathscr B(y)$ the group $H^p(X,X\setminus U;\mathscr G)$ is not trivial. Then $\dim_{\mathscr G}Y=p$}.
Received: 01.03.1976
Bibliographic databases:
Document Type: Article
UDC: 513.83
MSC: 22Bxx, 32C25, 20K30
Language: English
Original paper language: Russian
Citation: I. A. Shvedov, “On Aleksandrov's obstruction theorem”, Russian Math. Surveys, 31:5 (1976), 192–197
Citation in format AMSBIB
\Bibitem{Shv76}
\by I.~A.~Shvedov
\paper On~Aleksandrov's obstruction theorem
\jour Russian Math. Surveys
\yr 1976
\vol 31
\issue 5
\pages 192--197
\mathnet{http://mi.mathnet.ru//eng/rm3967}
\crossref{https://doi.org/10.1070/RM1976v031n05ABEH004196}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=515320}
\zmath{https://zbmath.org/?q=an:0346.55007}
Linking options:
  • https://www.mathnet.ru/eng/rm3967
  • https://doi.org/10.1070/RM1976v031n05ABEH004196
  • https://www.mathnet.ru/eng/rm/v31/i5/p185
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024