Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2000, Volume 55, Issue 5, Pages 825–921
DOI: https://doi.org/10.1070/RM2000v055n05ABEH000320
(Mi rm320)
 

This article is cited in 58 scientific papers (total in 59 papers)

Torus actions, combinatorial topology, and homological algebra

Victor M. Buchstaber [Bukhshtaber], Taras E. Panov

Department of Mathematics and Mechanics, Moscow State University
References:
Abstract: This paper is a survey of new results and open problems connected with fundamental combinatorial concepts, including polytopes, simplicial complexes, cubical complexes, and arrangements of subspaces. Attention is concentrated on simplicial and cubical subdivisions of manifolds, and especially on spheres. Important constructions are described that enable one to study these combinatorial objects by using commutative and homological algebra. The proposed approach to combinatorial problems is based on the theory of moment-angle complexes recently developed by the authors. The crucial construction assigns to each simplicial complex $K$ with $m$ vertices a $T^m$-space $\mathscr Z_K$ with special bigraded cellular decomposition. In the framework of this theory, well-known non-singular toric varieties arise as orbit spaces of maximally free actions of subtori on moment-angle complexes corresponding to simplicial spheres. It is shown that diverse invariants of simplicial complexes and related combinatorial-geometric objects can be expressed in terms of bigraded cohomology rings of the corresponding moment-angle complexes. Finally, it is shown that the new relationships between combinatorics, geometry, and topology lead to solutions of some well-known topological problems.
Received: 10.08.2000
Bibliographic databases:
Document Type: Article
UDC: 515.164+515.142+515.145+514.172.45
Language: English
Original paper language: Russian
Citation: Victor M. Buchstaber [Bukhshtaber], Taras E. Panov, “Torus actions, combinatorial topology, and homological algebra”, Russian Math. Surveys, 55:5 (2000), 825–921
Citation in format AMSBIB
\Bibitem{BucPan00}
\by Victor~M.~Buchstaber [Bukhshtaber], Taras~E.~Panov
\paper Torus actions, combinatorial topology, and homological algebra
\jour Russian Math. Surveys
\yr 2000
\vol 55
\issue 5
\pages 825--921
\mathnet{http://mi.mathnet.ru//eng/rm320}
\crossref{https://doi.org/10.1070/RM2000v055n05ABEH000320}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1799011}
\zmath{https://zbmath.org/?q=an:1010.52011}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2000RuMaS..55..825B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000168165100001}
\elib{https://elibrary.ru/item.asp?id=14150282}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034555865}
Linking options:
  • https://www.mathnet.ru/eng/rm320
  • https://doi.org/10.1070/RM2000v055n05ABEH000320
  • https://www.mathnet.ru/eng/rm/v55/i5/p3
  • This publication is cited in the following 59 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024