Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2000, Volume 55, Issue 4, Pages 613–633
DOI: https://doi.org/10.1070/rm2000v055n04ABEH000312
(Mi rm312)
 

This article is cited in 9 scientific papers (total in 10 papers)

Algebraic aspects of the theory of multiplications in complex cobordism theory

B. I. Botvinnika, V. M. Buchstaberb, S. P. Novikovc, S. A. Yuzvinskiia

a University of Oregon
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
c University of Maryland
References:
Abstract: The general classiffication problem for stable associative multiplications in complex cobordism theory is considered. It is shown that this problem reduces to the theory of a Hopf algebra $S$ (the Landweber–Novikov algebra) acting on the dual Hopf algebra $S^*$ with distinguished "topologically integral" part $\Lambda$ that corresponds to the complex cobordism algebra of a point. We describe the formal group and its logarithm in terms of the algebra representations of $S$. The notion of one-dimensional representations of a Hopf algebra is introduced, and examples of such representations motivated by well-known topological and algebraic results are given. Divided-difference operators on an integral domain are introduced and studied, and important examples of such operators arising from analysis, representation theory, and non-commutative algebra are described. We pay special attention to operators of division by a non-invertible element of a ring. Constructions of new associative multiplications (not necessarily commutative) are given by using divided-difference operators. As an application, we describe classes of new associative products in complex cobordism theory.
Received: 01.06.2000
Russian version:
Uspekhi Matematicheskikh Nauk, 2000, Volume 55, Issue 4(334), Pages 5–24
DOI: https://doi.org/10.4213/rm312
Bibliographic databases:
Document Type: Article
UDC: 513.836
MSC: Primary 57R77; Secondary 16W30, 57T05, 16G99, 55N22
Language: English
Original paper language: Russian
Citation: B. I. Botvinnik, V. M. Buchstaber, S. P. Novikov, S. A. Yuzvinskii, “Algebraic aspects of the theory of multiplications in complex cobordism theory”, Uspekhi Mat. Nauk, 55:4(334) (2000), 5–24; Russian Math. Surveys, 55:4 (2000), 613–633
Citation in format AMSBIB
\Bibitem{BotBucNov00}
\by B.~I.~Botvinnik, V.~M.~Buchstaber, S.~P.~Novikov, S.~A.~Yuzvinskii
\paper Algebraic aspects of the theory of multiplications in complex cobordism theory
\jour Uspekhi Mat. Nauk
\yr 2000
\vol 55
\issue 4(334)
\pages 5--24
\mathnet{http://mi.mathnet.ru/rm312}
\crossref{https://doi.org/10.4213/rm312}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1786728}
\zmath{https://zbmath.org/?q=an:0971.57038}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2000RuMaS..55..613B}
\elib{https://elibrary.ru/item.asp?id=13814412}
\transl
\jour Russian Math. Surveys
\yr 2000
\vol 55
\issue 4
\pages 613--633
\crossref{https://doi.org/10.1070/rm2000v055n04ABEH000312}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000167387200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034562919}
Linking options:
  • https://www.mathnet.ru/eng/rm312
  • https://doi.org/10.1070/rm2000v055n04ABEH000312
  • https://www.mathnet.ru/eng/rm/v55/i4/p5
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:898
    Russian version PDF:324
    English version PDF:37
    References:85
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024