\Bibitem{Yud83}
\by V.~I.~Yudovich
\paper Spectral properties of an oscillatory differential operator on the line
\jour Russian Math. Surveys
\yr 1983
\vol 38
\issue 1
\pages 227--228
\mathnet{http://mi.mathnet.ru/eng/rm2855}
\crossref{https://doi.org/10.1070/RM1983v038n01ABEH003419}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=693750}
\zmath{https://zbmath.org/?q=an:0532.47037}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1983RuMaS..38..227Y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983SD26300033}
Linking options:
https://www.mathnet.ru/eng/rm2855
https://doi.org/10.1070/RM1983v038n01ABEH003419
https://www.mathnet.ru/eng/rm/v38/i1/p205
This publication is cited in the following 2 articles:
G. D. Stepanov, “Effective criteria for the strong sign-regularity and the oscillation property of the Green's functions of two-point boundary-value problems”, Sb. Math., 188:11 (1997), 1687–1728
A. V. Borovskikh, Yu. V. Pokornyi, “Chebyshev–Haar systems in the theory of discontinuous Kellogg kernels”, Russian Math. Surveys, 49:3 (1994), 1–42