Loading [MathJax]/jax/output/SVG/config.js
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1983, Volume 38, Issue 1, Pages 187–188
DOI: https://doi.org/10.1070/RM1983v038n01ABEH003398
(Mi rm2832)
 

This article is cited in 16 scientific papers (total in 18 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

Universal properties for sequences of bifurcations of period three

A. I. Gol'berg, Ya. G. Sinai, K. M. Khanin
References:
Received: 28.06.1982
Bibliographic databases:
Document Type: Article
MSC: 37Gxx, 37C25
Language: English
Original paper language: Russian
Citation: A. I. Gol'berg, Ya. G. Sinai, K. M. Khanin, “Universal properties for sequences of bifurcations of period three”, Russian Math. Surveys, 38:1 (1983), 187–188
Citation in format AMSBIB
\Bibitem{GolSinKha83}
\by A.~I.~Gol'berg, Ya.~G.~Sinai, K.~M.~Khanin
\paper Universal properties for sequences of bifurcations of period three
\jour Russian Math. Surveys
\yr 1983
\vol 38
\issue 1
\pages 187--188
\mathnet{http://mi.mathnet.ru//eng/rm2832}
\crossref{https://doi.org/10.1070/RM1983v038n01ABEH003398}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=693727}
\zmath{https://zbmath.org/?q=an:0542.30039}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1983RuMaS..38..187G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983SD26300013}
Linking options:
  • https://www.mathnet.ru/eng/rm2832
  • https://doi.org/10.1070/RM1983v038n01ABEH003398
  • https://www.mathnet.ru/eng/rm/v38/i1/p159
  • This publication is cited in the following 18 articles:
    1. Sindre W. Haugland, Springer Theses, On Coexistence Patterns, 2023, 31  crossref
    2. Valery A. Kolombet, “Universal System of Tripling Periods for the Eye Is the Way to the “Logarithmic” Treatment of Neurological Diseases with Modern Lighting Technologies”, L&E, 2023, no. 03-2023, 78  crossref
    3. Vadim N. Lesnykh, Valery A. Kolombet, Alexander V. Elistratov, Anatoly M. Taranenko, Simon E. Shnoll, “On the Correspondence between the Spectral Sensitivity Characteristics of Human Eye Retina Photo-Receivers and the Frequencies of the Universal Period-Tripling System”, L&E, 2021, no. 05-2021, 12  crossref
    4. Konstantin Khanin, The Abel Prize, The Abel Prize 2013-2017, 2019, 243  crossref
    5. O. B. Isaeva, M. A. Obychev, D. V. Savin, “Dinamika diskretnoi sistemy s operatorom evolyutsii, zadavaemym neyavnoi funktsiei: ot otobrazheniya Mandelbrota k unitarnomu otobrazheniyu”, Nelineinaya dinam., 13:3 (2017), 331–348  mathnet  crossref  elib
    6. Andreas Prokoph, S.J.. Puetz, “Period-Tripling and Fractal Features in Multi-Billion Year Geological Records”, Math Geosci, 2015  crossref
    7. A. I. Bufetov, B. M. Gurevich, K. M. Khanin, F. Cellarosi, “The Abel Prize award to Ya. G. Sinai”, Russian Math. Surveys, 69:5 (2014), 931–956  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. Mikhail Lyubich, The Abel Prize, The Abel Prize 2008-2012, 2014, 375  crossref
    9. Alexander P. Kuznetsov, Sergey P. Kuznetsov, Julia V. Sedova, “Effect of noise on the critical golden-mean quasiperiodic dynamics in the circle map”, Physica A: Statistical Mechanics and its Applications, 359 (2006), 48  crossref
    10. Olga B. Isaeva, Sergey P. Kuznetsov, “Effect of noise on the dynamics of a complex map at the period-tripling accumulation point”, Phys Rev E, 69:3 (2004), 036216  crossref  mathscinet  isi
    11. Olga B. Isaeva, Sergey P. Kuznetsov, Vladimir I. Ponomarenko, “Mandelbrot set in coupled logistic maps and in an electronic experiment”, Phys Rev E, 64:5 (2001), 055201  crossref  adsnasa
    12. Michael Frame, A.G. Davis Philip, Adam Robucci, Chaos and Fractals, 1998, 269  crossref
    13. S. P. Novikov, L. A. Bunimovich, A. M. Vershik, B. M. Gurevich, E. I. Dinaburg, G. A. Margulis, V. I. Oseledets, S. A. Pirogov, K. M. Khanin, N. N. Chentsova, “Yakov Grigor'evich Sinai (on his sixtieth birthday)”, Russian Math. Surveys, 51:4 (1996), 765–778  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    14. Alexander S. Mikhailov, Alexander Yu. Loskutov, Springer Series in Synergetics, 52, Foundations of Synergetics II, 1996, 83  crossref
    15. Michael Frame, A.G.Davis Philip, Adam Robucci, “A new scaling along the spike of the Mandelbrot set”, Computers & Graphics, 16:2 (1992), 223  crossref
    16. Tan Lei, “Similarity between the Mandelbrot set and Julia sets”, Comm Math Phys, 134:3 (1990), 587  crossref  mathscinet  zmath  isi
    17. Michael Nauenberg, “Fractal boundary of domain of analyticity of the Feigenbaum function and relation to the Mandelbrot set”, J Stat Phys, 47:3-4 (1987), 459  crossref
    18. E. B. Vul, Ya. G. Sinai, K. M. Khanin, “Feigenbaum universality and the thermodynamic formalism”, Russian Math. Surveys, 39:3 (1984), 1–40  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:925
    Russian version PDF:225
    English version PDF:21
    References:98
    First page:6
     
      Contact us:
    math-net2025_01@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025