Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2000, Volume 55, Issue 2, Pages 297–321
DOI: https://doi.org/10.1070/rm2000v055n02ABEH000268
(Mi rm268)
 

This article is cited in 16 scientific papers (total in 17 papers)

The buffer property in resonance systems of non-linear hyperbolic equations

A. Yu. Kolesova, E. F. Mishchenkob, N. Kh. Rozovc

a P. G. Demidov Yaroslavl State University
b Steklov Mathematical Institute, Russian Academy of Sciences
c M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We study hyperbolic boundary-value problems for systems of telegraph equations with non-linear boundary conditions at the endpoints of a finite interval. The buffer property is established, that is, the existence of an arbitrary given finite number of stable time-periodic solutions for appropriately chosen parameter values, for this class of systems. For the case of a resonance spectrum of eigenfrequencies, the study of self-induced oscillations in various systems is shown to lead to one of the following two model problems, which are a kind of invariant:
\begin{gather*} \frac{\partial^2w}{\partial t\partial x}=w+\lambda(1-w^2)\frac{\partial w}{\partial x}\,, \qquad w(t,x+1)\equiv-w(t,x), \qquad \lambda>0; \\ \frac{\partial w}{\partial t}+a^2\frac{\partial^3w}{\partial x^3}=w-w^3, \qquad w(t,x+1)\equiv-w(t,x), \qquad a\ne 0. \end{gather*}
Informative examples from radiophysics are considered.
Received: 05.01.2000
Bibliographic databases:
Document Type: Article
UDC: 517.926
MSC: Primary 35L70, 35L75, 35L20; Secondary 35L35, 35B10, 35C20, 35Q99, 35K60
Language: English
Original paper language: Russian
Citation: A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “The buffer property in resonance systems of non-linear hyperbolic equations”, Russian Math. Surveys, 55:2 (2000), 297–321
Citation in format AMSBIB
\Bibitem{KolMisRoz00}
\by A.~Yu.~Kolesov, E.~F.~Mishchenko, N.~Kh.~Rozov
\paper The buffer property in resonance systems of non-linear hyperbolic equations
\jour Russian Math. Surveys
\yr 2000
\vol 55
\issue 2
\pages 297--321
\mathnet{http://mi.mathnet.ru//eng/rm268}
\crossref{https://doi.org/10.1070/rm2000v055n02ABEH000268}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1779942}
\zmath{https://zbmath.org/?q=an:0969.35087}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2000RuMaS..55..297K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000089971300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034371554}
Linking options:
  • https://www.mathnet.ru/eng/rm268
  • https://doi.org/10.1070/rm2000v055n02ABEH000268
  • https://www.mathnet.ru/eng/rm/v55/i2/p95
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024