Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 1999, Volume 54, Issue 6, Pages 1091–1147
DOI: https://doi.org/10.1070/RM1999v054n06ABEH000229
(Mi rm229)
 

This article is cited in 23 scientific papers (total in 23 papers)

Moduli of real algebraic surfaces, and their superanalogues. Differentials, spinors, and Jacobians of real curves

S. M. Natanzonab

a M. V. Lomonosov Moscow State University
b Independent University of Moscow
References:
Abstract: The survey is devoted to various aspects of the theory of real algebraic curves. The involution defined by complex conjugation induces an antiholomorphic involution $\tau\colon P\to P$ on the complexification $P$ of a real curve. This involution acts on all structures related to the Riemann surface $P$, namely, on vector bundles, Jacobians, Prymians, and so on. The greater part of the survey is devoted to finding topological invariants and studying the corresponding moduli spaces. Statements of these problems were inspired by applications of the theory of real curves to problems in mathematical physics (theory of solitons, string theory, and so on).
Received: 07.05.1999
Bibliographic databases:
Document Type: Article
UDC: 515.179.25
MSC: Primary 32G15; Secondary 30F10, 30F35, 14P25, 14H42, 58A50, 14H40
Language: English
Original paper language: Russian
Citation: S. M. Natanzon, “Moduli of real algebraic surfaces, and their superanalogues. Differentials, spinors, and Jacobians of real curves”, Russian Math. Surveys, 54:6 (1999), 1091–1147
Citation in format AMSBIB
\Bibitem{Nat99}
\by S.~M.~Natanzon
\paper Moduli of real algebraic surfaces, and their superanalogues. Differentials, spinors, and Jacobians of real curves
\jour Russian Math. Surveys
\yr 1999
\vol 54
\issue 6
\pages 1091--1147
\mathnet{http://mi.mathnet.ru//eng/rm229}
\crossref{https://doi.org/10.1070/RM1999v054n06ABEH000229}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1744657}
\zmath{https://zbmath.org/?q=an:1002.14012}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1999RuMaS..54.1091N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000087436000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0033260989}
Linking options:
  • https://www.mathnet.ru/eng/rm229
  • https://doi.org/10.1070/RM1999v054n06ABEH000229
  • https://www.mathnet.ru/eng/rm/v54/i6/p3
  • This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:850
    Russian version PDF:372
    English version PDF:35
    References:83
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024