\Bibitem{Leo88}
\by G.~A.~Leonov
\paper On estimates of the bifurcation values of the parameters of a~Lorentz system
\jour Russian Math. Surveys
\yr 1988
\vol 43
\issue 3
\pages 216--217
\mathnet{http://mi.mathnet.ru/eng/rm1909}
\crossref{https://doi.org/10.1070/RM1988v043n03ABEH001766}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=955789}
\zmath{https://zbmath.org/?q=an:0717.34044|0662.34042}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1988RuMaS..43..216L}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1988U421100015}
Linking options:
https://www.mathnet.ru/eng/rm1909
https://doi.org/10.1070/RM1988v043n03ABEH001766
https://www.mathnet.ru/eng/rm/v43/i3/p189
This publication is cited in the following 12 articles:
Kai Lu, Wenjing Xu, “Coexisting singular cycles in a class of three-dimensional three-zone piecewise affine systems”, DCDS-B, 27:12 (2022), 7315
Nikolay Kuznetsov, Volker Reitmann, Emergence, Complexity and Computation, 38, Attractor Dimension Estimates for Dynamical Systems: Theory and Computation, 2021, 3
Kai Lu, Qigui Yang, Guanrong Chen, “Singular cycles and chaos in a new class of 3D three-zone piecewise affine systems”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29:4 (2019)
Fuchen Zhang, Kunqiong Li, Guangyun Zhang, Chunlai Mu, “Qualitative analysis of a new Lorenz‐type chaotic system and its simulation”, Math Methods in App Sciences, 40:1 (2017), 31
Fuchen Zhang, Xiaofeng Liao, Yi-An Chen, Chunlai Mu, Guangyun Zhang, “On the Dynamics of the Chaotic General Lorenz System”, Int. J. Bifurcation Chaos, 27:05 (2017), 1750075
G. A. Leonov, “Necessary and sufficient conditions of the existence of homoclinic trajectories and cascade of bifurcations in Lorenz-like systems: birth of strange attractor and 9 homoclinic bifurcations”, Nonlinear Dyn, 84:2 (2016), 1055
G.A. Leonov, N.V. Kuznetsov, “On differences and similarities in the analysis of Lorenz, Chen, and Lu systems”, Applied Mathematics and Computation, 256 (2015), 334
Fuchen Zhang, Guangyun Zhang, “Further Results on Ultimate Bound on the Trajectories of the Lorenz System”, Qual. Theory Dyn. Syst, 2015
Fuchen Zhang, Xiaofeng Liao, Guangyun Zhang, “Dynamical behavior of a generalized Lorenz system model and its simulation”, Complexity, 2015, n/a
Fuchen Zhang, “On a model of the dynamical systems describing convective fluid motion in rotating cavity”, Applied Mathematics and Computation, 268 (2015), 873
G.A. Leonov, “General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu-Morioka, Lu and Chen systems”, Physics Letters A, 2012
Ale Jan Homburg, Björn Sandstede, Handbook of Dynamical Systems, 3, 2010, 379