|
Extremal problems for algebraic polynomials
B. Kh. Sendov Bulgarian Academy of Sciences
Abstract:
Let $L(p)$ be a linear operator on the set of monic algebraic polynomials $p(z)= (z_1-z)(z_2-z)\dotsb(z_n-z)$ with $z_1z_2\dotsb z_n=1$. Of interest here is the value
$$
[L]=\sup\bigl\{\min\{|L(p)(z_k)|:k=1,2,\dots,n\}:z_1z_2\dotsb z_n=1\bigr\}
$$
for various linear operators. The motivation is that Smale's mean value conjecture may be formulated as $[L]=1-1/(n+1)$ for the linear operator
$$
L(p)(z)=L\biggl(\sum_{k=0}^na_kz^k\biggr)=\sum_{k=0}^n\frac1{k+1}a_kz^k=\frac1z\int_0^zp(u)\,du, \enskip a_0=1, \ \ a_n=(-1)^n.
$$
Received: 20.09.2005
Citation:
B. Kh. Sendov, “Extremal problems for algebraic polynomials”, Russian Math. Surveys, 60:6 (2005), 1183–1194
Linking options:
https://www.mathnet.ru/eng/rm1682https://doi.org/10.1070/RM2005v060n06ABEH004287 https://www.mathnet.ru/eng/rm/v60/i6/p175
|
|